andrica_piticari1. 87KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS

No 10/2005

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON A CLASS OF SEQUENCES DEFINED BY USING
RIEMANN INTEGRAL
Dorin Andrica and Mihari Piticari
Abstract.The main result shows that if f : [1, +∞) → R is a continuous
function such that lim xf (x) exists and it is finite, then
x→∞

lim n

n→∞

Z

a


1

f (xn )dx =

for any a > 1. Two applications are given.

Z

+∞

1

f (x)
dx,
x

2000 Mathematical Subject Classification. 26A42, 42A16.
1.Introduction
There are many important classes of sequences defined by using Riemann

integral. We mention here only one which is called the Riemann-Lebesgue
Lemma: Let f : [a, b] → R be a continuous function, where 0 ≤ a < b.
Suppose the function g : [0, ∞) → R to be continuous and T -periodic. Then
Z b
1ZT
f (x)dx.
(1)
g(x)dx
T 0
a
a
For the proof we refer to [4] (in special case a = 0, b = T ) and [5]. In the
paper [1] we proved that a similar relation as (1) holds for all continuous and
bounded functions g : [0, ∞) → R of finite Cesaro mean.
In this note we investigate another class of such sequences, i.e. defined by
Ra
n 1 f (xn )dx, where f : [1, +∞) → R is a continuous function and a > 1 is a
fixed real number.

lim

n→∞

Z

b

f (x)g(nx)dx =

2.The main result
Our main result is the following.
Theorem.Let f : [1, +∞) → R be a continuous function such that x→∞
lim xf (x)

exists and it is finite. Then, the improper integral
381

R∞
1

f (x)

dx
x

is convergent and

D. Andrica, M. Piticari - On a class of sequences defined by using ...

lim n
n→∞
for any a > 1.

Z

a

1

f (xn )dx =

Z




1

f (x)
dx,
x

(2)

Proof. Consider lim xf (x) = l, where l ∈ R. Then, we can find a real
x→∞
number x0 > 1 such that for any x ≥ x0 we have
l−1
f (x)
l+1

≤ 2 .
2

x
x
x
Let us choose a real number m > 0 satisfying the inequality l − 1 + m ≥ 0.
Then, for any x ≥ x0 we have
l−1+m
f (x) m
l+1+m

+ 2 ≤
2
x
x
x
x2
Define the function J : [1, +∞) → R by
0≤

Z


J(t) =

(3)

!

f (x) m
+ 2 dx.
x
x

t

1

The function J is differentiable and we have
J ′ (t) =

f (t) m
+ 2 ≥0

t
t

for any t ≥ x0 . Therefore J is an increasing function on interval [x0 , +∞).
Moreover, by using the last inequality in (3) we get by integration


R x0  f (x)
R t  f (x)
m
m
dx
+
dx
+
+
1
x0
x
x

x2
x2
R t dx
R x0  f (x)
m
+ x2 dx + (l + 1 + m) x0 x2
≤ 1
x

R 

J(t) =



f (x)
x

x0
1


+

m
x2

dx +

l+1+m
,
x0

for any t ≥ x0 . It follows that lim J(t) is finite. But, we have
t→∞

J(t) =

Z

1


t

1
f (x)
,
dx + m 1 −
x
t


382



D. Andrica, M. Piticari - On a class of sequences defined by using ...
hence

t

Z

lim

t→∞ 1

f (x)
dx = lim J(t) − m,
t→∞
x

which is finite.
For a fixed real number a > 1, denote
J(t) = t

Z

a

1

t

f (x )dxandU (t) =

Z

at

1

f (x)
dx.
x

Because function g : [1, +∞) → R, g(x) = xf (x), is continuous and
lim g(x) is finite, it follows that g is bounded, i.e. we can find M > 0 with
x→∞
the property
|g(x)| ≤ M, x ∈ [1, ∞)

(4)

Changing the variable x by x = ut , we get dx = tut−1 du, hence
U (t) = t
From (4) and (5) we obtain

Z

a

1

f (ut )
du
u

(5)

R
R a f (xt )
a
t
dx =
f
(x
)dx

1
1
x

R 
R
t)
a

f
(x
a
dx =
= t 1 f (xt ) − x dx ≤ t 1 |f (xt )| x−1
R a x−1 x
Ra t
t x−1
= t 1h x |f (x )| xt+1 dx ≤ tM 1 xt+1i dx =

|J(t) − U (t)| = t
= Mt

Because

1
(a−t+1
1−t

(6)

− 1) − 1t (1 − a−t ) , t > 0

1
1
(a−t+1 − 1) − (1 − a−t ) = 0,
lim
t→∞ 1 − t
t
from (6) it follows that




lim J(t) = lim U (t),

t→∞

i.e. we have
lim

Z

t

t→∞ 1

and the desired result follows.

t→∞

Z a
f (x)
f (xt )dt
dx = lim
t→∞ 1
x

Remark. The relation (2) is a natural reformulation of the first part of
Problem 5.183 in [3] proposed by the second author and S. R˘adulescu.
383

D. Andrica, M. Piticari - On a class of sequences defined by using ...
3.Two applications
Application 1. Let us evaluate
a

dx
,
+k
1
where k > 0, a > 1 are fixed real numbers.
Using the result in Theorem for function f (x) =
lim n
n→∞

lim n
n→∞

Z

a

1

Z

(7)

xn

1
,
x+k

x ≥ 1, we obtain

Z ∞
dx
1
x ∞ 1
dx
= ln(k + 1).
=
=
ln
xn + k
x(x + k)
k x+k 1
k
1

Note that for k = 1 we get

lim n

n→∞

Z

a

dx
= ln 2,
+1

xn

1

i.e. the second part of Problem 5.183 in [3].
Application 2. Let us evaluate
xn−2
dx,
(8)
n→∞
0 x2n + xn + 1
which is a problem proposed by D. Popa to Mathematical Regional Contest
”Grigore Moisil”, 2002 (see [2] for details).
Fix a ∈ (0, 1) and we can write
lim n

n

Z

0

1

Z

1

Z a
Z 1
xn−2
xn−2
xn−2
dx
=
n
dx
+
n
dx.
x2n + xn + 1
0 x2n + xn + 1
a x2n + xn + 1

For the first term in the right side we have
0≤n

Z

0

a

Z a
nan−1
xn−2
n−2
x
dx
=
dx

n
→ 0.
x2n + xn + 1
n−1
0

For the second term we obtain
n

Z

1

a

Z 1
Z 1/a
xn−2
xn dx
tn
dx = n
=n
dt.
x2n + xn + 1
t2n + tn + 1
a x2 (x2n + xn + 1)
1

384

D. Andrica, M. Piticari - On a class of sequences defined by using ...
The function f (t) =
Z

1



t
t2 +t+1

satisfies lim tf (t) = 1 and we have
t→∞

Z ∞
t + 12 ∞
dt
π
2
f (t)



dt = lim
=
arctg

=
3 1
t→∞ 1
t
t2 + t + 1
3
3 3
2

Applying the result in Theorem it follows that
lim n

n→∞

Z

0

1

xn−2
π
dx = √ .
2n
n
x +x +1
3 3
References

[1] Andrica, D., Piticari, M., An extension of the Riemann-Lebesgue lemma
and some applications, Proc. International Conf. on Theory and Applications
of Mathematics and Informatics (ICTAMI 2004), Thessaloniki, Acta Universitatis Apulensis, No.8(2004), 26-39.
[2] Andrica, D., Berinde, V., a.o., Mathematical Regional Contest ”Grigore
Moisil” (Romanian), Cub Press 22, 2006.
[3] B˘atinet¸u-Giurgiu, D.M., a.o., Romanian National Mathematical Olympiads
for High Schools 1954-2003 (Romanian), Editura Enciclopedic˘a, Bucure¸sti,
2004.
[4] Dumitrel, F., Problems in Mathematical Analysis (Romanian), Editura
Scribul, 2002.
[5] Siret¸chi, Gh., Mathematical Analysis II. Advanced Problems in Differential and Integral Calculus, (Romanian), University of Bucharest, 1982.
Dorin Andrica
”Babe¸s-Bolyai” University
Faculty of Mathematics and Computer Science
Cluj-Napoca, Romania
E-mail address: dandrica@math.ubbcluj.ro
Mihai Piticari
”Drago¸s-Vod˘a” National College
Cˆampulung Moldovenesc, Romania

385

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52