03-21.2010. 90KB Jun 04 2011 12:07:11 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 22/2010
pp. 35-39

A NOTE ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED
˘ AGEAN
˘
BY A GENERALIZED SAL
OPERATOR

˘tas¸
Alina Alb Lupas¸, Adriana Ca
Abstract. By means of a generalized S˘al˘
agean differential operator we define
a new class BO(m, µ, α, λ) involving functions f ∈ An . Parallel results, for some
related classes including the class of starlike and convex functions respectively, are
also obtained.
2000 Mathematics Subject Classification: 30C45
1. Introduction and definitions

Let An denote the class of functions of the form
f (z) = z +


X

aj z j

(1)

j=n+1

which are analytic in the open unit disc U = {z : |z| < 1} and H(U ) the space of
holomorphic functions in U , n ∈ N = {1, 2, ...}.
Let S denote the subclass of functions that are univalent in U .
By S ∗ (α) we denote a subclass of An consisting of starlike univalent functions
of order α, 0 ≤ α < 1 which satisfies
 ′ 
zf (z)
> α, z ∈ U.

(2)
Re
f (z)
Further, a function f belonging to S is said to be convex of order α in U , if and
only if
 ′′

zf (z)
Re
+ 1 > α, z ∈ U
(3)
f ′ (z)

for some α, (0 ≤ α < 1) . We denote by K(α) the class of functions in S which are
convex of order α in U and denote by R(α) the class of functions in An which satisfy
Ref ′ (z) > α,
It is well known that K(α) ⊂ S ∗ (α) ⊂ S.
35

z ∈ U.


(4)

A. Alb Lupa¸s, A. C˘
ata¸s - A note on a subclass of analytic functions defined ...

If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that f (z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if
f (0) = g(0) and f (U ) ⊆ g(U ).
Let Dm be a generalized S˘
al˘agean operator introduced by Al-Oboudi in [3],
Dm : An → An , n ∈ N, m ∈ N ∪ {0}, defined as
D0 f (z) = f (z)
D1 f (z) = (1 − λ) f (z) + λzf ′ (z) = Dλ f (z),
m

D f (z) = Dλ (D
We note that if f ∈ An ,


m−1

f (z)),

λ>0

z ∈ U.

then

Dm f (z) = z +


P

[1 + (j − 1) λ]m aj z j , z ∈ U.

j=n+1

For λ = 1, we get the S˘al˘

agean operator [7].
To prove our main theorem we shall need the following lemma.
Lemma 1.[6]Let p be analytic in U with p(0) = 1 and suppose that


zp′ (z)
3α − 1
Re 1 +
>
, z ∈ U.
p(z)

Then Rep(z) > α for

(5)

z ∈ U and 1/2 ≤ α < 1.
2. Main results

Definition 1. We say that a function f ∈ An is in the class BO(m, µ, α, λ),

n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, λ ≥ 0, α ∈ [0, 1) if



Dm+1 f (z) 

z
λ


1
z ∈ U.
(6)


0, 1/2 ≤ α < 1 if
1 Dλm+2 f (z) µ Dλm+1 f (z) µ − 1

+
+ 1 ≺ 1 + βz, z ∈ U

λ Dλm+1 f (z) λ Dλm f (z)
λ
where
β=

(7)

3α − 1


then f ∈ BO(m, µ, α, λ).
Proof. If we consider
p(z) =

Dλm+1 f (z)
z



z

Dλm f (z)



(8)

then p(z) is analytic in U with p(0) = 1. A simple differentiation yields
zp′ (z)
1 Dλm+2 f (z) µ Dλm+1 f (z) µ − 1

=
+
.
p(z)
λ Dλm+1 f (z) λ Dλm f (z)
λ

(9)

Using (7) we get



zp′ (z)
Re 1 +
p(z)



>

3α − 1
.


Thus, from Lemma 1 we deduce that
(

µ )
Dλm+1 f (z)
z

> α.
Re
z
Dλm f (z)
Therefore, f ∈ BO(m, µ, α, λ), by Definition 1.
As a consequence of the above theorem we have the following interesting corollaries.
Corollary 3.[1] If f ∈ An and


1
2zf ′′ (z) + z 2 f ′′′ (z) zf ′′ (z)
− ′
>− ,
Re

′′
f (z) + zf (z)
f (z)
2
37


z ∈ U,

(10)

A. Alb Lupa¸s, A. C˘
ata¸s - A note on a subclass of analytic functions defined ...

then f ∈ BO(1, 1, 1/2, 1) hence


zf ′′ (z)
1
Re 1 + ′
> ,
f (z)
2

z ∈ U.

(11)

z ∈ U,

(12)

That is, f is convex of order 21 .
Corollary 4.[1] If f ∈ An and


zf ′′ (z)
1
Re 1 + ′
> ,
f (z)
2
then

1
Ref ′ (z) > ,
2

z ∈ U.

(13)

In another
words, if the function f is convex of order

R 21 .

1
2

then f ∈ BO(0, 0, 12 , 1) ≡

Corollary 5.[1] If f ∈ An and


1
f (z) + 3zf ′ (z) + z 2 f ′′ (z) zf ′ (z)
− ′
> ,
Re


f (z) + zf (z)
f (z)
2

then
Re



zf ′ (z)
f (z)



> 0,

z ∈ U,

z ∈ U.

(14)

(15)

That is, f is a starlike function.
Corollary 6.[1] If f ∈ An and


1
−f (z) + 5zf ′ (z) + z 2 f ′′ (z)
Re
>− ,
f (z) + zf (z)
2
then
Re



f (z)
+ f ′ (z) − 2
z

38



> 2,

z ∈ U.

z ∈ U,

(16)

(17)

A. Alb Lupa¸s, A. C˘
ata¸s - A note on a subclass of analytic functions defined ...

References
[1] A. Alb Lupa¸s, A subclass of analytic functions defined by Ruscheweyh derivative, Acta Universitatis Apulensis, nr. 19/2009, 31-34.
[2] A.Alb Lupa¸s and A. C˘
ata¸s, A note on a subclass of analytic functions defined by differential S˘
al˘
agean operator, Buletinul Academiei de S
¸ tiint¸e a Republicii
Moldova, Matematica, nr. 2(60), 2009, 131-134.
[3] F.M. Al-Oboudi, On univalent functions defined by generalized S˘
al˘
agean operator, Internat. J. Math. and Math. Sci., 27(2004), 1429-1436.
[4] A. C˘
ata¸s and A. Alb Lupa¸s, On Sufficient Conditions for Certain Subclass of
Analytic Functions Defined by Differential S˘
al˘
agean Operator, International Journal
of Open Problem in Complex Analysis, Vol. 1, No. 2, Nov. 2009, 14-18.
[5] B.A. Frasin and M. Darus, On certain analytic univalent functions, Internat.
J. Math. and Math. Sci., 25(5), 2001, 305-310.
[6] B.A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic
functions, Analele Universit˘a¸tii din Oradea, Tom XV, 2008, 61-64.
[7] G. St. S˘
al˘agean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer Verlag, Berlin, 1013(1983), 362-372.
Alb Lupa¸s Alina
Department of Mathematics
University of Oradea
str. Universit˘
a¸tii nr. 1, 410087, Oradea, Romania
email: [email protected]
C˘ata¸s Adriana
Department of Mathematics
University of Oradea
str. Universit˘
a¸tii nr. 1, 410087, Oradea, Romania
email: [email protected]

39

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52