BMAA3-2-15. 234KB Jun 04 2011 12:03:32 AM

Bulletin of Mathematical Analysis and Applications
ISSN: 1821-1291, URL: http://www.bmathaa.org
Volume 3 Issue 2(2011), Pages 159-166.

ON A NEW SUBFAMILIES OF ANALYTIC AND UNIVALENT
FUNCTIONS WITH NEGATIVE COEFFICIENT WITH RESPECT
TO OTHER POINTS

(COMMUNICATED BY R.K. RAINA)

OLATUNJI S.O. AND OLADIPO A. T.
Abstract. In this work, the authors introduced new subfamilies of ω−starlike
and ω −convex functions with negative coefficient with respect to other points.
The coefficient estimates for these classes are obtained. Also relevant connection to classical Fekete-Zsego theorem is briefly discussed.

1. Introduction
In the recent time, precisely in 1999, Kanas and Ronning [3] introduced a new
concept of analytic functions denoted by A(ω) and of the form
f (z) = (z − ω) +



X

ak (z − ω)k

(1.1)

k=2

which are analytic and univalent in the unit disc U = {z : |z| < 1} and normalized
by f (ω) = 0 and f ′ (ω) − 1 = 0 and ω is a fixed point in U . Also they denoted
by S(ω) a subclass of A(ω) the class of functions analytic and univalent. They use
(1.1) to define the following classes


(z − ω)f ′ (z)
ST (ω) = S ∗ (ω) = f (z) ∈ S(ω) : Re
> 0, z ∈ U
f (z)



(z − ω)f ′ (z)
CV (ω) = S (ω) = f (z) ∈ S(ω) : 1 + Re
> 0, z ∈ U
f ′ (z)
c

and ω is a fixed point in U . The above two classes are known as ω − starlike and
ω − convex functions. Several other authors, the likes of Acu and Owa [1], Oladipo
[4], Oladipo and Breaz [5] has worked on these classes, and they view them from
2000 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. analytic functions, coefficient estimates, coefficient bounds, symmetric, conjugate and Fekete-Zsego.
c
2011
Universiteti i Prishtinës, Prishtinë, Kosovë.
Submitted April 26, 2011. Accepted May 15, 2011.
159

160

OLATUNJI S.O. AND OLADIPO A. T.


different perspective and they obtained many interesting result.
Let H(ω) be the subfamily of S(ω) and of the form
f (z) = (z − ω) −


X

ak (z − ω)k

(1.2)

k=2

which are analytic and normalized as in the above.
Let f be defined by (1.2) and f ∈ H(ω) satisfy
Re

(z − ω)f ′ (z)
>0

f (z)

then f (z) ∈ T ∗ (ω) where T ∗ (ω) is a subfamily of S ∗ (ω) and ω is a fixed point in
U.
Also, let f be defined as in (2) and f ∈ H(ω) satisfy


(z − ω)f ′ (z)
>0
Re 1 +
f ′ (z)
then f ∈ K c (ω) and K c (ω) is a subfamily of S c (ω) and ω is a fixed point in U .
The classes are respectively subfamilies of ω − starlike and ω − convex.
The authors here wish to give the following preliminaries which shall be well dealt
with in our subsequent section.
We let Ts∗ (ω) be the subclass of S consisting


(z − ω)f ′ (z)
Re

> 0, z ∈ U.
f (z) − f (−z)
We shall referred to this class of functions as ω −starlike with respect to symmetric
points.
Also, Tc∗ (ω) consisting of functions ω − starlike with respect to conjugate points.
The class Tc∗ (ω) a subclass S(ω) consisting of functions f defined by (1.2) satisfying
the condition
)
(
(z − ω)f ′ (z)
> 0, z ∈ U.
Re
f (z) + f (z)
and ω is a fixed point in U .
Furthermore, we let Ksc (ω) be the subclass of S(ω) consisting of functions given by
(1.2) satisfying the condition

′ 
((z − ω)f ′ (z))
> 0, z ∈ U

Re

(f (z) − f (−z))
and ω is a fixed point in U . This is the class ω − convex with respect to symmetric
point.
Moreover, in term of subordination, we recalled that in 1982 Goel and Mehrok [2],
C. Selvaraj and N. Vasanthi [6] introduced a subclasses of Ss∗ denoted by Ss∗ (A, B)
and f is of the form (1.1). We shall employ the analogue of their definition. That
is, we let Ts∗ (ω, A, B) be the class of functions f of the form (1.2) and satisfying
the condition
1 + A(z − ω)
2(z − ω)f ′ (z)

, −1 ≤ B < A ≤ 1, z ∈ U
f (z) − f (−z)
1 + B(z − ω)

ON A NEW SUBFAMILIES OF ANALYTIC AND UNIVALENT FUNCTIONS

161


Also, we let Tc∗ (ω, A, B) be the class of functions of the form (1.2) and satisfying


1 + A(z − ω)
2 ((z − ω)f ′ (z))

 ≺
, −1 ≤ B < A ≤ 1, z ∈ U,
1 + B(z − ω)
f (z) + f (z)

Let Ksc (ω, A, B) be the class of functions of the form (1.2) and satisfying the condition

1 + A(z − ω)
2 ((z − ω)f ′ (z))
, −1 ≤ B < A ≤ 1, z ∈ U,
′ ≺
1 + B(z − ω)
(f (z) − f (−z))

Also, we let Kcc (ω, A, B) be the class of functions of the form (1.2) and satisfying
the condition

1 + A(z − ω)
2 ((z − ω)f ′ (z))
, −1 ≤ B < A ≤ 1, z ∈ U,
′ ≺

1
+ B(z − ω)
f (z) + f (z)
and ω is a fixed point in U .
In this paper, the authors introduced the class Φs (ω, α, A, B) consisting of analytic
functions f of the form (1.2) and satisfying
2(z − ω)f ′ (z) + 2α(z − ω)2 f ′′ (z)
1 + A(z − ω)
′ ≺
1 + B(z − ω)
(1 − α) (f (z) − f (−z)) + α(z − ω) (f (z) − f (−z))


(1.3)

−1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1, z ∈ U , and ω is a fixed point in U .
Also we introduce the class Φc (ω, α, A, B) consisting of analytic functions f of the
form (1.2) and satisfying
1 + A(z − ω)
2(z − ω)f ′ (z) + 2α(z − ω)2 f ′′ (z)



′ ≺
1
+ B(z − ω)
(1 − α) f (z) + f (z) + α(z − ω) f (z) + f (z)

(1.4)

−1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1, z ∈ U ,and ω is a fixed point in U .
By the definition of subordination it follows that f ∈ Φs (ω, α, A, B) if and only if
2(z − ω)f ′ (z) + 2α(z − ω)2 f ′′ (z)

1 + Ah(z)
= p(z)
′ =
1 + Bh(z)
(1 − α) (f (z) − f (−z)) + α(z − ω) (f (z) − f (−z))

(1.5)

h ∈ U and h is of the form
h(ω) = (z − ω) +


X

bk (z − ω)k

k=2

h(ω) = 0 and |h(ω)| < 1, h is analytic and univalent and that f ∈ Φc (ω, α, A, B) if
and only if

2(z − ω)f ′ (z) + 2α(z − ω)2 f ′′ (z)
1 + Ah(z)
= p(z)



′ =
1 + Bh(z)
(1 − α) f (z) + f (z) + α(z − ω) f (z) + f (z)

where p(z) in our case is given as

p(z) = 1 +


X

pk (z − ω)k

k=1

and
|pk | ≤

(A − B)
, k ≥ 1, |ω| = d
(1 + d)(1 − d)k

(1.7)

(1.6)

162

OLATUNJI S.O. AND OLADIPO A. T.

In the next section, we study the classes Φs (ω, α, A, B) and Φc (ω, α, A, B), the
coefficient estimates for functions belonging to these classes are obtained
2. Coefficient estimates
Theorem 2.1: Let f ∈ Φs (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
|a2 | ≤ −
|a3 | ≤ −
|a4 | ≤ −

|a5 | ≤ −

A−B
2(1 + α)(1 − d2 )

A−B
2(1 + 2α)(1 − d2 )(1 − d)

(2.1)

(A − B) [A − B + 2(1 + d)]
2.4(1 + 3α)(1 − d2 )2 (1 − d)

(A − B) [A − B + 2(1 + d)]
2.4(1 + 4α)(1 − d2 )2 (1 − d)2

Proof:From (1.5) and (1.7), we have
h
(z − ω) − 2a2 (z − ω)2 − 3a3 (z − ω)3 − 4a4 (z − ω)4 − 5a5 (z − ω)5 −
i
6a6 (z − ω)6 − 7a7 (z − ω)7 − ...
h
+ α − 2a2 (z − ω)2 − 6a3 (z − ω)3 − 12a4 (z − ω)4 − 20a5 (z − ω)5 −
i
30a6 (z − ω)6 − 42a7 (z − ω)7 − ... =
h
i
(1 − α) (z − ω) − a3 (z − ω)3 − a5 (z − ω)5 − a7 (z − ω)7 − ... 1 + p1 (z − ω)+

p2 (z − ω)2 + p3 (z − ω)3 + p4 (z − ω)4 + ...
h
i
+ α (z − ω) − 3a3 (z − ω)3 − 5a5 (z − ω)5 − 7a7 (z − ω)7 − ... 1 + p1 (z − ω)+

p2 (z − ω)2 + p3 (z − ω)3 + p4 (z − ω)4 + ...
Equating the coefficient of the like powers of (z − ω), we have
−2(1 + α)a2 = p1
−2(1 + 2α)a3 = p2
−4(1 + 3α)a4 = p3 − (1 + 2α)p1 a3
−4(1 + 4α)a5 = p4 − (1 + 2α)p2 a3
Using (1.7) on the above we have
|a2 | ≤ −

|a3 | ≤ −

|a4 | ≤ −

A−B
2(1 + α)(1 − d2 )

A−B
2(1 + 2α)(1 − d2 )(1 − d)

(A − B) [A − B + 2(1 + d)]
2.4(1 + 3α)(1 − d2 )2 (1 − d)

ON A NEW SUBFAMILIES OF ANALYTIC AND UNIVALENT FUNCTIONS

|a5 | ≤ −

163

(A − B) [A − B + 2(1 + d)]
2.4(1 + 4α)(1 − d2 )2 (1 − d)2

and this complete the proof of Theorem 2.1.
If we set d = 0 in Theorem 2.1 we have
Corollary 2.1. Let f ∈ Φs (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
|a2 | ≤ −

|a3 | ≤ −

A−B
2(1 + α)

A−B
2(1 + 2α)

|a4 | ≤ −

(A − B) [A − B + 2]
2.4(1 + 3α)

|a5 | ≤ −

(A − B) [A − B + 2]
2.4(1 + 4α)

If we set α = 1 in corollary A, we have
Corollary 2.2. Let f ∈ Φs (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
|a2 | ≤ −

A−B
2.2

|a3 | ≤ −

A−B
2.3

|a4 | ≤ −

(A − B) [A − B + 2]
2.4.4

|a5 | ≤ −

(A − B) [A − B + 2]
2.4.5

Theorem 2.2:Let f ∈ Φc (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
|a2 | ≤ −

|a3 | ≤ −

A−B
(1 + α)(1 − d2 )

(A − B) [A − B + (1 + d)]
2(1 + 2α)(1 − d2 )2

(2.2)



(A − B) (A − B)2 + 3(A − B)(1 + d) + 2(1 + d)2
|a4 | ≤ −
2.3(1 + 3α)(1 − d2 )3


(A − B) (A − B)3 + 6(1 + d)(A − B)2 + 11(1 + d)2 (A − B) + 6(1 + d)3
|a5 | ≤ −
2.3.4(1 + 4α)(1 − d2 )4

164

OLATUNJI S.O. AND OLADIPO A. T.

Proof:
From (1.6) and (1.7), we have
h
(z − ω) − 2a2 (z − ω)2 − 3a3 (z − ω)3 − 4a4 (z − ω)4 − 5a5 (z − ω)5 −
i
6a6 (z − ω)6 − 7a7 (z − ω)7 − ...
h
+ α − 2a2 (z − ω)2 − 6a3 (z − ω)3 − 12a4 (z − ω)4 − 20a5 (z − ω)5 −
i
30a6 (z − ω)6 − 42a7 (z − ω)7 − ... =
h
(1 − α) (z − ω) − a2 (z − ω)2 − a3 (z − ω)3 a4 (z − ω)4 −
i
a5 (z − ω)5 − a6 (z − ω)6 − a7 (z − ω)7 − ...


1 + p1 (z − ω) + p2 (z − ω)2 + p3 (z − ω)3 + p4 (z − ω)4 + ...
h
+ α (z − ω) − 2a2 (z − ω)2 − 3a3 (z − ω)3 − 4a4 (z − ω)4 −
i
5a5 (z − ω)5 − 6a6 (z − ω)6 − 7a7 (z − ω)7 − ...


1 + p1 (z − ω) + p2 (z − ω)2 + p3 (z − ω)3 + p4 (z − ω)4 + ...
Equating the coefficient of the like powers of (z − ω), we have −(1 + α)a2 = p1
−2(1 + 2α)a3 = p2 − (1 + α)a2 p1
−3(1 + 3α)a4 = p3 − (1 + α)a2 p2 − (1 + 2α)a3 p1
−4(1 + 4α)a5 = p4 − (1 + α)a2 p3 − (1 + 2α)a3 p2 − (1 + 3α)a4 p1
using (1.7) above we have
A−B
|a2 | ≤ −
(1 + α)(1 − d2 )
|a3 | ≤ −

(A − B) [A − B + (1 + d)]
2(1 + 2α)(1 − d2 )2



(A − B) (A − B)2 + 3(A − B)(1 + d) + 2(1 + d)2
|a4 | ≤ −
2.3(1 + 3α)(1 − d2 )3


(A − B) (A − B)3 + 6(1 + d)(A − B)2 + 11(1 + d)2 (A − B) + 6(1 + d)3
|a5 | ≤ −
2.3.4(1 + 4α)(1 − d2 )4
If we set d = 0 in Theorem 2.2, we have
Corollary 2.3. Let f ∈ Φc (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
A−B
|a2 | ≤ −
(1 + α)
(A − B) [A − B + 1)]
2(1 + 2α)


(A − B) (A − B)2 + 3(A − B) + 2
|a4 | ≤ −
2.3(1 + 3α)
|a3 | ≤ −

ON A NEW SUBFAMILIES OF ANALYTIC AND UNIVALENT FUNCTIONS

|a5 | ≤ −

165



(A − B) (A − B)3 + 6(A − B)2 + 11(A − B) + 6
2.3.4(1 + 4α)

If we set α = 1 in Theorem 2.2, we have
Corollary 2.4. Let f ∈ Φc (ω, α, A, B). Then for k = 2, 3, 4, 5., 0 ≤ α ≤ 1
A−B
|a2 | ≤ −
2
(A − B) [A − B + 1)]
2.3


(A − B) (A − B)2 + 3(A − B) + 2
|a4 | ≤ −
2.3.4


3
(A − B) (A − B) + 6(A − B)2 + 11(A − B) + 6
|a5 | ≤ −
2.3.4.5
Our next results are the relevant connection of our classes to the classical FeketeZsego Theorem.
Theorem 2.3: Let f ∈ Φs (ω, α, A, B). Then


2


a3 − µa22 ≤ −(A − B)(1 − d) 2(1 + α) (1 + d) + µ(A − B)(2α + 1) , µ ≤ 0
4(1 + α)2 (1 + 2α)(1 − d2 )2 (1 − d)
(2.3)


2
2


(A

B)
(1

d)
(1
+
2α)
((A

B)
+
2(1
+
d))

4(1
+
d)(1
+
α)(1
+
3α)
2
a 2 a 4 − a 3 ≤
16(1 + α)(1 + 2α)2 (1 + 3α)(1 − d)2 (1 − d2 )3
(2.4)
Proof: The proof follows from Theorem 2.1. With various choices of the parameters
involved, various connection of our class to the classical Fekete-Zsego Theorem could
be obtained.
Theorem 2.4: Let f ∈ Φc (ω, α, A, B). Then
 2



a3 − µa22 ≤ − (A − B) α ((A − B) + (1 + d)) + (2α + 1) [(A − B)(2µ + 1) + (1 + d)]
2(1 + α)2 (1 + 2α)(1 − d2 )2
(2.5)




2
2
2
2


(A

B)
(A

B)
+
3(A

B)(1
+
d)
+
2(1
+
d)
(A

B)
(A − B)2 + (1 + d)2
a2 a4 − a23 ≤

6(1 + α)(1 + 3α)(1 − d2 )4
4(1 + 2α)2 (1 − d2 )4
(2.6)
Proof: Also, the proof follows from Theorem 2.2.
|a3 | ≤ −

References
[1] M. Acu and S. Owa: On some subclasses of univalent functions, Journal of Inequalities in Pure
and Applied Mathematics Vol 6, issue 3, Article 70 (2005), 1-14.
[2] R.M. Goel and B.C. Mehok: A subclass of starlike functions with respect to symmetric points,
Tamkang J. Math., 13(1) (1982), 11-24.
[3] S.Kanas and F. Ronning : Uniformly starlike and convex functions and other related classes
of univalent functions, Ann. UNiv. Mariae Curie - Sklodowska Section A, 53, (1999) 95-105.
[4] A.T. Oladipo: On a subclasses of univalent functions Advances in Applied Mathematical
Analysis Vol 4 No 2: (2009) 87-93.
[5] A.T. Oladipo and D. Breaz: On the family of Bazilevic functions. Acta universitatis Apulensis
No 24 (2010).
[6] C.Selvaraj and N.Vasanthi: Subclasses of analytic functions with respect to symmetric and
conjugate points. Tamkang J. Math., 42(1) (2011), 87-94.

166

OLATUNJI S.O. AND OLADIPO A. T.

Department of Pure and Applied Mathematics,, Ladoke Akintola University of Technology, Ogbomoso, P. M. B. 4000, Ogbomoso, Nigeria.
E-mail address: olatfem− [email protected]; atlab− [email protected]

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52