article01_3. 282KB Jun 04 2011 12:06:50 AM

Journal de Th´eorie des Nombres
de Bordeaux 19 (2007), 1–25

Sign changes of error terms related to
arithmetical functions
par Paulo J. ALMEIDA

P
6
´sume
´. Soit H(x) = n≤x φ(n)
Re
e par une conn − π 2 x. Motiv´
jecture de Erd¨os, Lau a d´evelopp´e une nouvelle m´ethode et il a
d´emontr´e que #{n ≤ T : H(n)H(n + 1) < 0} ≫ T. Nous consiP
d´erons des fonctions arithm´etiques f (n) = d|n bdd dont l’addition
P
peut ˆetre exprim´ee comme n≤x f (n) = αx + P (log(x)) + E(x).

P
Ici P (x) est un polynˆ

ome, E(x) = − n≤y(x) bnn ψ nx + o(1) avec
ψ(x) = x − ⌊x⌋ − 1/2. Nous g´en´eralisons la m´ethode de Lau et
d´emontrons des r´esultats sur le nombre de changements de signe
pour ces termes d’erreur.
P
6
Abstract. Let H(x) = n≤x φ(n)
n − π 2 x. Motivated by a conjecture of Erd¨
os, Lau developed a new method and proved that
#{n ≤ T : H(n)H(n + 1) < 0} ≫ T. We consider arithmetical
P
functions f (n) = d|n bdd whose summation can be expressed as
P
+ E(x), where P (x) is a polynomial,
n≤x f (n) = αx + P (log(x))

P
E(x) = − n≤y(x) bnn ψ nx + o(1) and ψ(x) = x − ⌊x⌋ − 1/2. We
generalize Lau’s method and prove results about the number of
sign changes for these error terms.


1. Introduction
We say that an arithmetical function f (x) has a sign change on integers
at x = n, if f (n)f (n + 1) < 0. The number of sign changes on integers of
f (x) on the interval [1, T ] is defined as
Nf (T ) = #{n ≤ T, n integer : f (n)f (n + 1) < 0}.
We also define zf (T ) = #{n ≤ T, n integer : f (n) = 0}. Throughout this
work, ψ(x) = x − ⌊x⌋ − 1/2 and f (n) will be an arithmetical function such
Manuscrit re¸cu le 8 janvier 2006.
This work was funded by Funda¸ca
˜o para a Ciˆ
encia e a Tecnologia grant number
SFRH/BD/4691/2001, support from my advisor and from the department of mathematics of
University of Georgia.

Paulo J. Almeida

2

that

f (n) =

X bd
d|n

d

for some sequence of real numbers bn .

The motivation for our work was a paper by Y.-K. Lau [5], where he
proves that the error term, H(x), given by
X φ(n)
6
= 2 x + H(x)
n
π

n≤x

has a positive proportion of sign changes on integers solving a conjecture

stated by P. Erd¨os in 1967.
An important tool that Lau used to prove his theorem, was that the
error term H(x) can be expressed as


X µ(n)  x 
1
+O
ψ
(1)
H(x) = −
, (S. Chowla [3])
n
n
log20 x
n≤ x
log5 x

We generalize Lau’s result in the following way
Theorem 1.1. Suppose H(x) is a function that can be expressed as



X bn  x 
1
(2)
H(x) = −
ψ
+O
,
n
n
k(x)
n≤y(x)

where each bn is a real number and
1

(i) y(x) increasing, x 4 ≪ y(x) ≪
(3)


X

n≤x

x
(log x)5+

D
2

, for some D > 0, and

b4n ≪ x logD x;

(ii) k(x) is an increasing function, satisfying limx→∞ k(x) = ∞.
(iii) H(x) = H(⌊x⌋) − α{x} + θ(x), where α 6= 0 and θ(x) = o(1).

Let ≺ ∈ { 0 and
αH(n) ≺ 0. In particular,
(1) #{n ≤ T : αH(n) > 0} ≫ T ;

(2) if #{n ≤ T : αH(n) < 0} ≫ T , then NH (T ) ≫ T or zH (T ) ≫ T .

We consider arithmetical functions f (n) for which, the error term of the
summation function satisfies the conditions of Theorem 1.1. A first class is
described in the following result

Sign changes of error terms

3

Theorem 1.2. Let f (n) be an arithmetical function and suppose the sequence bn satisfies condition (3) and


X
x
(4)
bn = Bx + O
logA x
n≤x
for some B real, D > 0 and A > 6 +


D
2,

respectively. Let α =

P∞

bn
n=1 n2 ,

X b

X
B log 2πx γb
n
f (n) − αx +
− B log x and H(x) =
+ .
x→∞

n
2
2

γb = lim

n≤x

n≤x

If α 6= 0, then Theorem 1.1 is valid for the error term H(x). Moreover, if
f (n) is a rational function, then, except when α = 0, or B = 0 and α is
rational, we have
NH (T ) ≫ T

if and only if

#{n ≤ T : αH(n) < 0} ≫ T.

Notice that this class of arithmetical functions is closed for addition, i.e.,

if f (n) and g(n) are members of the class then also is (f + g)(n). In the
case considered by Lau, it was known that H(x) has a positive proportion
of negative values (Y.-F. S. P´etermann [6]), so the second part of Theorem
n
1.2 generalizes Lau’s result. Another example is f (n) = φ(n)
.
Using a result of U. Balakrishnan and Y.-F. S. P´etermann [2] we are able
to apply Theorem 1.1 to more general arithmetical functions:
Theorem 1.3. Let f (n) be an arithmetical function and suppose the sequence bn satisfies condition (3) and
(5)


X
bn
= ζ β (s)g(s)
ns

n=1

for some β real, D > 0, and a function g(s) with a Dirichlet series expansion absolutely convergent for σ > 1−λ, for some λ > 0. Let α = ζ β (2)g(2)

and
( P
f (n) − αx,
if β < 0,
P⌊β⌋
Pn≤x
H(x) =
β−j
if β > 0,
n≤x f (n) − αx −
j=0 Bj (log x)
where the constants Bj are well defined. If α 6= 0, then Theorem 1.1 is
valid for the error term H(x).
Theorem 1.3 is valid for the following examples, where r 6= 0 is real:






σ(n) r
φ(n) r
φ(n) r
,
,
.
n
n
σ(n)

Paulo J. Almeida

4

2. Main Lemma
The main tool used by Y.-K. Lau was his Main Lemma, where he proved
P
6
that if H(x) = n≤x φ(n)
n − π 2 x then
2
Z 2T Z t+h
H(u) du
dt ≪ T h,
t

T

for sufficiently large T and any 1 ≤ h ≪ log4 T . Lau’s argument depends
essentially on the formula (1). In this section, we obtain a generalization
of Lau’s Main Lemma.
Main Lemma. Suppose H(x) is a function that can be expressed as (2)
and satisfies conditions (i) and (ii) of Theorem 1.1. Then, for all large T
and h ≤ min log T, k 2 (T ) , we have
2
Z 2T Z t+h
3
H(u) du
dt ≪ T h 2 .
(6)
T

t

For any positive integer N , define
X bd  x 
(7)
HN (x) = −
ψ
.
d
d
d≤N

The Main Lemma will follow from the next result.
Lemma 2.1. Assume the conditions of the Main Lemma and take D > 0
satisfying condition (i). Let E = 4 + D
2 , then
(a) For any δ > 0, large T , any Y ≪ T and N ≤ y(T ), we have
Z T +Y
Y
Y
+ y(T + Y ) (log T )E ;
(H(u) − HN (u))2 du ≪ 1−δ + 2
k (T )
N
T

(b) For all large T , N ≤ y(T ) and 1 ≤ h ≤ min log T, k 2 (T ) , we have
2
Z 2T Z t+h
3
HN (u) du
dt ≪ T h 2 + N 3 (log N )E .
T

t

Now we prove the Main Lemma:
1

Proof. Take N = T 4 and δ > 0 small. Cauchy’s inequality gives us
Z t+h
Z t+h
2
2
H(u) du ≤ 2
HN (u) du
t

t

+2

Z

t

t+h

(H(u) − HN (u)) du

2

.

Sign changes of error terms

5

1

Since N = T 4 then, for sufficiently large T , N 3 logE N ≪ T . So, using
part (b) of Lemma 2.1 we have
2
Z 2T Z t+h
3
3
HN (u) du
dt ≪ T h 2 + N 3 logE N ≪ T h 2 .
t

T

Using Cauchy’s inequality and interchanging the integrals,
2
Z 2T Z t+h
(H(u) − HN (u)) du dt
t

T

2T

≤h

Z

2T +h

≤h

Z

Z

≪h

Z

min(u,2T )

max(u−h,T )

T

2T +h

Z

2

2

T





(H(u) − HN (u)) du dt

t

T

≤ h2

t+h

2

!

(H(u) − HN (u)) dt du

(H(u) − HN (u))2 du

T +h T +h
+ 2
+ y(2T + h) (log T )E
k (T )
N 1−δ
3



≪ T + Th ≪ Th2
since y(2T + h) ≪

T
(log T )E+1

Z

2T

T

and h ≤ min(log T, k 2 (T )). Hence
2
Z t+h
3
dt ≪ T h 2 .
H(u) du
t



3. Step I
In this section, we will prove part (a) of Lemma 2.1. Using expression
(2) and Cauchy’s inequality, we obtain
2



Z T +Y
Z T +Y
y(u)


X
u 
bm
Y

du+O
ψ
.
(H(u) − HN (u))2du ≤ 2
m
m
k 2 (T )
T
T
m=N +1

−1
−1
Let η(T, m, n) = max T, y (m), y (n) , then
2

Z T +Y
y(T +Y )
y(u)
 u  u
X bm  u 
X bm bn Z T +Y


du = 2
ψ
ψ
ψ
du.
2
m
m
mn η(T,m,n) m
n
T
m=N +1

m,n=N +1

Paulo J. Almeida

6

The Fourier series of ψ(u) = u − ⌊u⌋ − 12 , when u is not an integer, is
given by

1 X sin(2πku)
ψ(u) = −
,
π
k

(8)

k=1

so we obtain
2
π2

y(T +Y )





Z

ku
bm bn X 1 T +Y
lu
sin 2π
sin 2π
du.
mn
kl η(T,m,n)
m
n

X

m,n=N +1

k,l=1

Now, the integral above is equal to






Z
l
l
k
k
1 T +Y
cos 2πu
+
− cos 2πu

du.
2 η(T,m,n)
m n
m n
For the first term we get



Z T +Y
l
k
+
du ≪
cos 2πu
m n
η(T,m,n)
If

k
m

k
m

= nl , then
T +Y

Z



cos 2πu

η(T,m,n)



l
k

m n



1
.
+ nl

du ≤ Y,

otherwise
Z

T +Y



cos 2πu

η(T,m,n)



l
k

m n



1
.
du ≪ k
− l
m
n

Part (a) of Lemma 2.1 will now follow from the next three lemmas.
Lemma 3.1. Let E = 4 +
X

m,n≤X

|bm bn |

D
2 as

X

k,l=1

kn6=lm

in Lemma 2.1. Then
1
≪ X (log X)E .
kl | kn − lm|

Lemma 3.2. If D > 0 satisfies condition (3), then
X

m,n≤X

|bm bn |


X

k,l=1

D
1
≪ X (log X)1+ 2 .
kl ( kn + lm)

Lemma 3.3. For any δ > 0,
X

N 0.
2
n
n
N

n≤N

n>N

Proof. Follows from Cauchy’s inequality, partial summations and the fact
that, for any ǫ > 0, τ (n) = O(nǫ ).

Remark. If H(x) can be expressed in the form (2), then


X |bn |
D
1
(9)
|H(x)| ≤
+O
≪ (log x)1+ 4 .
n
k(x)
n≤y(x)

Proof of Lemma 3.2 : Since the arithmetical mean is greater or equal to
the geometrical mean, we have


X
X
X
X
1
1

|bm bn |
|bm bn |
≤2
kl(kn + lm)
kl knlm
m,n≤X
m,n≤X
k,l=1
k,l=1
 X |b | 2
√m

m
m≤X

 X  X b2 
M

1
M
m≤X

M ≤X
D

≪ X(log X)1+ 2 .


Proof of Lemma 3.3 : For the second sum, take d = (m, n), m = dα and
n = dβ. Since kn = lm, then α|k and β|l. Taking k = αγ, we also have
l = βγ. As


X
1 X 1
π 2 (m, n)2
1
=
=
.
(10)
kl
αβ
γ2
6 mn
k,l=1

kn=lm

γ=1

Paulo J. Almeida

8

Then,

|bm bn | X 1
π2
=
mn
kl
6

X

N

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52