Paper-10-Acta24.2010. 141KB Jun 04 2011 12:03:09 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 95-107

BOUNDEDNESS FOR MULTILINEAR COMMUTATOR OF
LITTLEWOOD-PALEY OPERATOR ON HARDY AND
HERZ-HARDY SPACES

Jiasheng Zeng
, K̇qα,p ) type boundedness
Abstract. In this paper, the (H~p , Lp ) and (H K̇ α,p
b
q,~b
for the multilinear commutator associated with the Littlewood-Paley operator are
obtained.
2000 Mathematics Subject Classification: 42B20, 42B25.
1. Introduction and definition
Let 0 < q < ∞ and Lqloc (Rn ) = {f q is locally integrable on Rn }. Suppose
f ∈ L1loc (Rn ), B = B(x0 , r) = {x ∈ Rn : |x − x0 | < Rr} denotes a ball of Rn

centered at xR0 and having radius r, write fB = |B|−1 B f (x)dx and f # (x) =
supx∈B |B|−1 B |f (x) − fB |dx < ∞. f is said to belong to BM O(Rn ), if f # ∈
L∞ (Rn ) and define ||f ||BM O = ||f # ||L∞ .
Let T be the Calderón-Zygmund singular integral operator and b ∈ BM O(Rn ).
The commutator [b, T ] generated by b and T is defined by
[b, T ](f )(x) = b(x)T (f )(x) − T (bf )(x).
A classical result of Coifman, Rochberg and Weiss (see[2]) proved that the commutator [b, T ] is bounded on Lr (Rn ) for any 1 < r < ∞. However, it was observed
that the [b, T ] is not bounded, in general, from H p (Rn ) to Lp (Rn ) when 0 < p ≤ 1.
But if H p (Rn ) is replaced by a suitable atomic space H~p (Rn )(see [1][7][12]), then
b
[b, T ] maps continuously H~p (Rn ) into Lp (Rn ), and a similar results holds for Herzb
type spaces. In addition we have easily known that H~p (Rn ) ⊂ H p (Rn ). The main
b
purpose of this paper is to consider the continuity of the multilinear commutators
related to the Littlewood-Paley operators and BM O(Rn ) functions on certain Hardy
and Herz-Hardy spaces. Let us first introduce some definitions(see [1][3-10][12][13]).
Definition 1. Let ε > 0, n > δ > 0 and ψ be a fixed function which satisfies the
following properties:
95


J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...

R
(1)
Rn ψ(x)dx = 0,
(2) |ψ(x)| ≤ C(1 + |x|)−(n+1−δ) ,
(3) |ψ(x + y) − ψ(x)| ≤ C|y|ε (1 + |x|)−(n+1+ε−δ) when 2|y| < |x|;
The Littlewood-Paley multilinear commutator is defined by
"Z Z
#1/2
~b
~b
2 dydt
|Ft (f )(x, y)| n+1
Sδ (f )(x) =
,
t
Γ(x)
where
~


Ftb (f )(x, y) =

Z

Rn

n+1
R+




m
Y

j=1




(bj (x) − bj (z)) ψt (y − z)f (z)dz,

Γ(x) = {(y,R t) ∈
: |x − y| < t} and ψt (x) = t−n+δ ψ(x/t) for t > 0. Set
Ft (f )(y) = Rn ψt (y − x)f (x)dx. We also define that
Sδ (f )(x) =

dydt
|Ft (f )(x, y)|2 n+1
t
Γ(x)

Z Z

!1/2

,

which is the Littlewood-Paley operator with δ = 0(see [15]).
Given a positive integer m and 1 ≤ j ≤ m, we denote by Cjm the family of all

finite subsets σ = {σ(1), · · ·, σ(j)} of {1, · · ·, m} of j different elements. For σ ∈ Cjm ,
set σ c = {1, · · ·, m} \ σ. For ~b = (b1 , · · ·, bm ) and σ = {σ(1), · · ·, σ(j)} ∈ Cjm , set
~bσ = (bσ(1) , · · ·, bσ(j) ), bσ = bσ(1) · · · bσ(j) and ||~bσ ||BM O = ||bσ(1) ||BM O · · · ||bσ(j) ||BM O .
Definition 2. Let bi (i = 1, · · · , m) be a locally integrable functions and 0 < p ≤
1. A bounded measurable function a on Rn is called a (p, ~b) atom, if
(1) supp a ⊂ B = B(x0 , r)
−1/p
(2) R||a||L∞ ≤ |B(x
R 0 , r)| Q
m
(3)
l∈σ bl (y)dy = 0 for any σ ∈ Cj , 1 ≤ j ≤ m .
B a(y)dy = B a(y)
A temperate distribution(see [14][15]) f is said to belong to H~p (Rn ), if, in the
b
Schwartz distribution sense, it can be written as
f (x) =


X


λj aj (x).

j=1

P∞
p
p
where a′j s are (p, ~b) atoms, λj ∈ C and
j=1 |λj | < ∞. Moreover, ||f ||H~ ≈
b
P∞
( j=1 |λj |p )1/p .
Definition 3. Let 0 < p, q < ∞, α ∈ R. For k ∈ Z, set Bk = {x ∈ Rn : |x| ≤ 2k }
and Ck = Bk \ Bk−1 ,andχk = χCk for k ∈ Z,where χCk is the characteristic function
of set Ck . Denote the characteristic function of B0 by χ0 .
96

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...


(1) The homogeneous Herz space is defined by
n
o
K̇qα,p (Rn ) = f ∈ Lqloc (Rn \ {0}) : ||f ||K̇qα,p < ∞ .
where

||f ||K̇qα,p =

"


X

2kαp ||f χk ||pLq

k=−∞

#1/p

.


(2) The nonhomogeneous Herz space is defined by
n
o
Kqα,p (Rn ) = f ∈ Lqloc (Rn ) : ||f ||Kqα,p < ∞ .

where

||f ||Kqα,p =

"


X

2kαp ||f χk ||pLq + ||f χ0 ||pLq

k=1

#1/p


.

Definition 4. Let α ∈ Rn , 1 < q < ∞, α ≥ n(1 − 1/q), bi ∈ BM O(Rn ), 1 ≤
i ≤ m. A function a(x) is called a central (α, q, ~b) -atom (or a central (α, q, ~b)-atom
of restrict type ), if
(1) supp a ⊂ B = B(x0 , r)(or for some r ≥ 1),
−α/n ,
(2) ||a||
R
R Lq ≤ β|B(x0 , r)|
Q
m
β
(3)
i∈σ bi (x)dx = 0 for any σ ∈ Cj , 1 ≤ j ≤ m,
B a(x)x dx = B a(x)x
0 ≤ |β| ≤ P
α, where β = (β1 , ..., βn ) is the multi-indices with βi ∈ N for 1 ≤ i ≤ n
and |β| = ni=1 βi .

(Rn )), if it
(Rn )(or HK α,p
A temperate distribution f is said to belong to H K̇ α,p
q,~b
q,~b
P∞
P∞
can be written as f = j=−∞ λj aj (or f = j=0 λj aj ), in the S ′ (Rn ) sense, where
aj is a central (α,
q, ~b)-atom(or a central
(α, q, ~b)-atom of restrict type ) supported
P
P


on B(0, 2j ) and −∞ |λj |p < ∞(or j=0 |λj | < ∞). Moreover,
X
||f ||H K̇ α,p ( or ||f ||HK α,p ) = inf(
|λj |p )1/p ,
q,~

b

q,~
b

j

where the infimum are taken over all the decompositions of f as above.
2. Theorems and Proofs
To prove the theorems, we need the following lemmas.
Lemma 1.(see [12]) Let 1 < p < q < n/α, 1/q = 1/p − α/n. Then Sδ is bounded
from Lp (Rn ) to Lq (Rn ).
~
Lemma 2.(see [12]) Let 1 < p < q < n/α, 1/q = 1/p − α/n. Then Sδb is bounded
p
n
q
n
from L (R ) to L (R ).
97

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...

Theorem 1. Let ε > 0, n/(n + ε − δ) < p ≤ 1, 1/q = 1/p − δ/n, bi ∈ BM O, 1 ≤
~
i ≤ m, ~b = (b1 , · · · , bm ). Then the multilinear commutator Sδb is bounded from
p
H~ (Rn ) to Lq (Rn ).
b
Proof. It suffices to show that there exist a constant C > 0, such that for every
~
(p, b) atom a,
~
||Sδb (a)||Lq ≤ C.
Let a be a (p, ~b) atom supported on a ball B = B(x0 , d). When m = 1 see [7], and
now we prove m > 1. Write
Z
Z
Z
~
~
~
|Sδb (a)(x)|q dx =
|Sδb (a)(x)|q dx +
|Sδb (a)(x)|q dx = I + II.
Rn

|x−x0 |≤2d

|x−x0 |>2d

For I, taking r, s > 1 with q < s < n/δ and 1/r = 1/s − δ/n, by Hölder’s
~
inequality and the (Ls , Lr )-boundedness of Sδb , we have
I ≤

Z

|x−x0 |≤2d

!q/r

~
|Sδb (a)(x)|r dx

· |B(x0 , 2d)|1−q/r

~

≤ C||Sδb (a)(x)||qLr · |B(x0 , d)|1−q/r
≤ C||a||qLs |B|1−q/r
≤ C.
For II, denoting λ = (λ1 , · · · , λm ) with λi = (bi )B , 1 ≤ i ≤ m, where (bi )B =

98

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...
|B(x0 , r)|−1

R

B(x0 ,r) bi (x)dx,

∞ Z
X

II =

~

2k+1 r≥|x−x

k=1

X

0

|>2k d

|Sδb (a)(x)|q dx
Z

|B(x0 , 2k+1 d)|1−q

≤ C

≤ C

by the vanishing moment of a, we get

k=1

X

2k+1 d≥|x−x0 |>2k d

!q

~
|Sδb (a)(x)|dx

|B(x0 , 2k+1 d)|1−q

k=1


Z

× 

2k+1 d≥|x−x

≤ C


X

0

|>2k d

k+1

|B(x0 , 2

k=1



× 




Z Z

1−q

d)|

|

Γ(x)

Z Y
m

(bj (x) − bj (z))ψt (y − z)a(z)dz|2

B j=1

Z
[

1/2

dydt 
tn+1

q


dx

2k+1 d≥|x−x0 |>2k d

2

1/2
Z
m
Y
dydt
 |ψt (y − z) − ψt (y − x0 )|
|(bj (x) − bj (z))||a(z)|dz  n+1  dx]q ;
t
Γ(x)
B

Z Z

j=1

noting that z ∈ B, x ∈ B(x0 , 2k+1 d) \ B(x0 , 2k d), then
~

Sδb (a)(x)


2
1/2
Z Z
Z
m
Y
dydt
 |ψt (y − z) − ψt (y − x0 )|
= 
|bj (x) − bj (z)||a(z)|dz  n+1 
t
Γ(x)
B
j=1


Z Z

≤ C

Γ(x)

≤ C

Z Z

Γ(x)

≤ C

Z Z

Γ(x)




Z

B

t−n+δ |a(z)|

m
Y

j=1

2
1/2
dydt
(|x0 − z|/t)ε
dz  n+1 
|bj (x) − bj (z)|
t
(1 + |x0 − y|/t)n+1+ε−δ

t1−n
dydt
(t + |x0 − y|)2(n+1+ε−δ)

!1/2 Z

t1−n 22(n+1+ε−δ)
dydt
(2t + 2|x0 − y|)2(n+1+ε−δ)

m
Y

|bj (x) − bj (z)||x0 − z|ε |a(z)|dz

B j=1

!1/2 Z

m
Y

|bj (x) − bj (z)||x0 − z|ε |a(z)|dz;

B j=1

Notice that 2t + |x0 − y| > 2t + |x0 − x| − |x − y| > t + |x0 − x| when |x − y| < t,

99

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...

and it is easy to calculate that
Z ∞
0

tdt
= C|x − x0 |−2(n+ε−δ) ;
(t + |x − x0 |)2(n+1+ε−δ)

then, we deduce
~

Sδb (a)(x)
Z Z
≤ C

!1/2 Z m
Y
t1−n
dydt
|bj (x) − bj (z)||x0 − z|ε |a(z)|dz
2(n+1+ε−δ)
(2t
+
|x

y|)
0
B j=1
Γ(x)
!
1/2 Z
Z Z
m
Y
t1−n
dydt
|bj (x) − bj (z)||x0 − z|ε |a(z)|dz
≤ C
2(n+1+ε−δ)
B j=1
Γ(x) (t + |x − x0 |)
Z ∞
1/2 Z Y
m
tdt
≤ C
|bj (x) − bj (z)||x0 − z|ε |a(z)|dz
2(n+1+ε−δ)
(t
+
|x

x
|)
0
0
B j=1
Z Y
m
≤ C|B|ε/n−1/p |x − x0 |−(n+ε−δ)
|bj (x) − bj (z)|dz.
B j=1

100

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...

So

X

II ≤ C|B|(ε/n−1/p)q

|B(x0 , 2k+1 r)|1−q

k=1


Z
×

2k+1 d≥|x−x0 |>2k d

≤ C|B|(ε/n−1/p)q


X


 q
Z Y
m
|x − x0 |−(n+ε−δ) 
|bj (x) − bj (z)|dz  dx
B j=1

|B(x0 , 2k+1 r)|1−q

k=1


m X Z
X
×
j=0

σ∈Cjm

≤ C|B|(ε/n−1/p)q

2k+1 d≥|x−x

0

|>2k d

m X Z
X

×

|B(x0 , 2k+1 d)|1−q

k=1

≤ C

m X
X

|(~b(z) − λ)σc |dz

"Z

2k+1 d≥|x−x0 |>2k d

||~bσc ||qBM O · ||~bσ ||qBM O

j=0 σ∈Cjm

≤ C||~b||qBM O

B

B

j=0 σ∈Cjm


X

|x − x0 |−(n+ε−δ) |(~b(x) − λ)σ |dx


X

Z


X

q

q

|(~b(z) − λ)σc |dz 

|x − x0 |−(n+ε−δ) |(~b(x) − λ)σ |dx

#q

|B(x0 , 2k+1 d)|1−(n+ε−δ)q/n k q |B|(1+ε/n−1/p)q

k=1

k q · 2k(n−q−qn+qδ)

k=1

≤ C.

This finishes the proof of Theorem 1.
Theorem 2. Let ε > 0, 0 < p < ∞, 1 < q1 , q2 < ∞, 1/q1 − 1/q2 = δ/n,
n(1 − 1/q1 ) ≤ α < n(1 − 1/q1 ) + ε and bi ∈ BM O(Rn ), 1 ≤ i ≤ m, ~b = (b1 , · · · , bm ).
~
α,p
n
n
Then Sδb is bounded from H K̇qα,p
m (R ) to K̇q2 (R ).
1 ,D A
P
Proof. Let f ∈ H K̇ α,p~ (Rn ) and f (x) = ∞
j=−∞ λj aj (x) be the atomic decomq 1 ,b

101

J. Zeng - Boundedness for multilinear commutator of Littlewood-Paley operator...

position for f as in Definition 4, we write
~
||Sδb (f )(x)||K̇qα,p
2




X




X

≤ C

2kαp (

2kαp (

+C 


X


X

k−3
X

2kαp (

k=−∞

kαp

2

~
||Sδb (f )χk ||pLq2

k=−∞

j=−∞

k=−∞



=

j=−∞

k=−∞

≤ C


X

~

1/p

~

1/p

|λj |||Sδb (aj )χk ||Lq2 )p 

|λj |||Sδb (aj )χk ||Lq2 )p 


X

j=k−2

= I + II.

!1/p

~

1/p

|λj |||Sδb (aj )χk ||Lq2 )p 
~

For II, by the (Lq1 , Lq2 )-boundedness of Sδb and the Hölder’s inequality, we have


II ≤ C 


X

k=−∞



2kαp 


X

j=k−2

p 1/p

~
|λj |||Sδb (aj )χj ||Lq2 



p 1/p


X
X
2kαp 
|λj |||aj ||Lq1  
≤ C
−∞



≤ C



j=k−2


X

k=−∞



2kαp 


X

j=k−2

p 1/p

|λj | · 2−jα  

 h
i1/p
Pj+2

p
(k−j)αp
 P∞

|
2
, 0

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52