draghici1. 122KB Jun 04 2011 12:08:37 AM

About an integral operator preserving
meromorphic starlike functions
Eugen Dr˘aghici∗

Abstract
Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane.Let Σk be
the class of meromorphic functions f in U having the form:
f (z) =

1
+ αk z k + · · · , 0 < |z| < 1, k ≥ 0
z

A function f ∈ Σ = Σ0 is called starlike if
zf ′ (z)
> 0 in U
Re −
f (z)





Let denote by Σ∗k the class of starlike functions inΣk and by An the class of
holomorphic functions g of the form:
g(z) = z + an+1 z n+1 + · · · , z ∈ U, n ≥ 1
With suitable conditions on k, p ∈ N,on c ∈ R,on γ ∈ C and on the function
g ∈ Ak+1 , the author shows that the integral operator
Lg,c,γ : Σ → Σ defined by:
Kg,c(f )(z) ≡

c
g c+1 (z)

Z

0

z

f (t)g c(t)eγt dt, z ∈ U, f ∈ Σ
p


maps Σ∗k into Σ∗l , where l = min{p − 1, k}.
The author aknowleges support received from the“Conference of the German Academies of
Sciences”( Konferenz der Deutschen Akademien der Wissenschaften ), with funds provided by the
“Volkswagen Stiftung”.This work was done while the author was visiting the University of Hagen
in Germany.
1991 Mathematics Subject Classification : Primary : 30C80,30C45, Secondary : 30D.
Key words and phrases : meromorphic starlike function,subordination.


Bull. Belg. Math. Soc. 4 (1997), 245–250

246

E. Dr˘aghici

1 Introduction
Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane.We denote by
Σk the class of meromorphic functions f in U having the form:
f(z) =


1
+ αk z k + · · · , 0 < |z| < 1, k ≥ 0
z

A function f ∈ Σ = Σ0 is called starlike if:
"

#

zf ′ (z)
Re −
> 0 ,z ∈ U
f(z)
Let denote by Σ∗k the class of starlike functions in Σk .
Let An be the class of functions
g(z) = z + an+1 z n+1 + · · · , z ∈ U, n ≥ 1
that are holomorphic in U.Let k, p ∈ N, c > 0, γ ∈ C and g ∈ Ak+1 with g(z)/z 6= 0
in U.Let us define the following integral operators:
Ig,c , Jg,c , Kg,c and Lg,c,γ : Σ → Σ

by the following equations:
Ig,c (f)(z) =
Jg,c (f)(z) =

c
g c+1 (z)
c

Z

z

Z

z

0

f(t)g c (t)g ′(t)dt , z ∈ U, f ∈ Σ


(1)

zf(t)g c+1 (t)
dt , z ∈ U, f ∈ Σ
t

(2)

g c+1 (z) 0
Z z
c
Kg,c (f)(z) = c+1
f(t)g c (t)dt , z ∈ U , f ∈ Σ
g (z) 0
Z z
c
p
Lg,c,γ (f)(z) = c+1
f(t)g c (t) mathrmeγt dt, z ∈ U, f ∈ Σ
g (z) 0


(3)
(4)

In [1] and [2] the authors found sufficient conditions on c and g so that
Ig,c (Σ∗k ) ⊂ Σ∗k , Jg,c (Σ∗k ) ⊂ Σ∗k and Kg,c (Σ∗k ) ⊂ Σ∗k
The purpose of this article is to find sufficient conditions on g, c and γ so that
Lg,c,γ (Σ∗k ) ⊂ Σ∗l where l = min{p − 1, k}. For γ = 0 we obtain Theorem 1 from
[2]. In section 4 we give also a new example of an integral operator that preserves
meromorphic starlike functions.

2 Preliminaries
For proving our main result we will need the following definitions and lemmas.
If f and g are holomorphic functions in U and g is univalent, then we say that f
is subordinate to g, written f ≺ g or f(z) ≺ g(z) if f(0) = g(0) and f(U) ⊂ g(U).
The holomorphic function f, with f(0) = 0 and f ′ (0) 6= 0 is starlike in U (i.e.
f is univalent in U and f(U) is starlike with respect to the origin) if and only if
Re[zf ′ (z)/f(z)] > 0 in U.

247


About an integral operator preserving meromorphic starlike functions

Let h be starlike in U and let p(z) = 1 + pn z n + · · · be holomorphic

Lemma 1 [6]
in U.If

zp′ (z)
≺ h(z)
p(z)

then p ≺ q, where

1
q(z) = exp
n

Z


0

z

h(t)
dt.
t

This result is due to T.J.Suffridge and the proof can be found in [6]
Lemma 2 [3]

Let the function ψ : C2 × U → C satisfy the condition:
Re ψ[is, t; z] ≤ 0

for all real s and t ≤ −n(1 + s2)/2
If p(z) = 1 + pn z n + · · · is holomorphic in U and
Re ψ[p(z), zp′(z); z] > 0 , z ∈ U
then Re p(z) > 0 in U.
Lemma 3 [4]


Let B and C be two complex functions in the unit disc U satisfying:
|Im C(z)| ≤ n Re B(z) , z ∈ U , n ∈ N

If p(z) = 1 + pn z n + · · · is holomorphic in U and
Re [B(z)zp′(z) + C(z)p(z)] > 0 , z ∈ U
then Re p(z) > 0 in U.
We mention here that Lemma 3 is a particular case of Lemma 2. More general
forms of this two lemmas and proofs can be found in [5]

3 Main result
Theorem 1
Let γ ∈ C, c > 0 and let p and k be positive integers. If g ∈ Ak+1
is starlike and g(z)/z 6= 0 in U and if G(z) = zg ′ (z)/g(z) satisfies:

"
#
#

g(z) −γzp
g(z) −γzp



e
≤ (k + 1) Re
e
,z ∈ U
Im (c + 1)g (z) −

z
z

(5)

[2 + (k + 1)(c + 1)] Re G(z) > 2 [1 + pReγz p ] , z ∈ U

(6)

2

nh


(c + 1) [Im zG′ (z) − 2 Im G(z) Re (1 − G(z) + γpz p )] ≤
≤ {[2 + (k + 1)(c + 1)] Re G(z) − 2 [1 + p Re γz p]}·
i

o

· k+1+2(c+1)|G(z)|2 ReG(z)+2(c+1)RezG′(z)G(z)−2(c+1)|G(z)|2 (1+pReγz p)

(7)

then Lg,c,γ (Σ∗k ) ⊂ Σ∗l where the integral operator Lg,c,γ is defined by (4) and l =
min{p − 1, k}.

248

E. Dr˘aghici

Proof

Let f ∈ Σ∗k and let F = Lg,c,γ (f). From (4) we deduce:
zF ′(z) + (c + 1)G(z)F (z) =

czf(z)eγz
g(z)

p

(8)

Let φ(z) = zf(z) = 1 + αk z k+1 + · · · . Since f ∈ Σ∗k we deduce:
zφ′ (z)
zf ′ (z)
Re
= Re 1 +
φ(z)
f(z
and thus

!

0 in U
Let now P (z) = zF (z). From (8) we obtain:
e

−γzp

(

"

#

)

g(z)
g(z) ′
P (z) = czf(z)
zP (z) + (c + 1)g ′ (z) −
z
z

Hence:
(

Re e

−γzp

"

#

)

g(z) ′
g(z)
p
zP (z) + e−γz (c + 1)g ′ (z) −
P (z) > 0 in U
z
z

Then, from (5) and Lemma 3 it follows immediately that:
Re P (z) = Re[zF (z)] > 0 in U. Hence, the function
p(z) = −

zF ′(z)
= 1 + ql+1z l+1 + · · ·
F (z)

is holomorphic in U and (8) becomes:
czf(z)eγz
F (z) [(c + 1)G(z) − p(z)] =
g(z)

p

Taking the logarithmic derivative, we obtain:
p(z) +

zp′ (z) − (c + 1)zG′ (z)
zf ′ (z)
+ 1 − G(z) + γpz p = −
(c + 1)G(z) − p(z)
f(z)

Because f ∈ Σ∗k , we deduce:
"

#

zp′ (z) − (c + 1)zG′ (z)
Re p(z) +
+ 1 − G(z) + γpz p > 0 in U
(c + 1)G(z) − p(z)
Let now define ψ : C2 × U → C by
ψ[u, v; z] = u +

v − (c + 1)zG′ (z)
+ 1 − G(z) + γpz p
(c + 1)G(z) − u

(9)

249

About an integral operator preserving meromorphic starlike functions
From (9) we have:
Re ψ[p(z), zp′(z); z] > 0 in U

(10)

In order to show that (10) implies Re p(z) > 0 in U it is sufficient to check the
inequality:
Re ψ[is, t; z] = Re

t − (c + 1)zG′ (z)
+ 1 − Re G(z) + Re γpz p ≤ 0
(c + 1)G(z) − is

(11)

for all real s and t ≤ −(k + 1)(c + 1)/2 and then to apply Lemma 2.
If we denote:
D = |(c + 1)G(z) − is|2 = (c + 1)2 |G(z)|2 − 2(c + 1) Im G(z) + s2

(12)

then we have:
Re ψ[is,t; z] =

1
Re{t(c+1)G(z) + ist−(c+1)2zG′(z)G(z)−(c+1)iszG′(z) +
D
i
h
+(1−G(z)+γpz p) (c+1)G(z)+is [(c+1)G(z)−is]}

Because t ≤ −(k + 1)(1 + s2 )/2 and g is starlike( i.e. Re G(z) > 0 in U ), we have:
2D Re ψ[is, t; z] ≤ −{s2 [(2 + (k + 1)(c + 1)) Re G(z)−2 (1+ p Re γz p)]−
−2s(c + 1)[Im zG′ (z)−2 Im G(z) Re (1 − G(z)+ γpz p )]+
+(c + 1)

h

k + 1 + 2(c + 1) |G(z)|

2



i

Re G(z)+2(c + 1) Re zG′ (z)G(z) −

−2(c + 1)2 |G(z)|2 (1 + p Re γz p )}

Then, from (6) and (7) it follows immediately that Re ψ[is, t; z] ≤ 0 for all real s
and t ≤ −(k + 1)(s2 + 1)/2
Hence,by Lemma 2 we obtain that p has positive real part in U, and thus F ∈ Σ∗k
and the theorem is proved.

4 Some particular cases

1. If we let γ = 0, by applying Theorem 1 2we obtain the result from [2].
2. If we let c = k = p− 1 = 1, g(z) = zexp λz2 and γ = −λ/2, then G(z) = 1+λz 2

and for |λ| < 1 we have immediately that Re G(z) > 0 in U. Hence, g is starlike in
U for |λ| < 1
Let λz 2 = ρeiθ , 0 < ρ < 1, θ ∈ R and let τ = ρ sin θ ∈ (−1, 1).
Condition (5) is equivalent to:
|2ρ sin(θ + τ ) + sin τ | ≤ 2 cos τ


It is easy to show that this inequality holds for all θ ∈ R and ρ ≤ ( 2 − 1)/2.
Condition (6) is equivalent to:
4(1 + ρ cos θ) > 0

250

E. Dr˘aghici

which is true for all ρ ∈ (0, 1).
Condition (7) is equivalent to:
ρ4 sin2 2θ − 4ρ3 cos3 θ − 3ρ2 (2 cos2 θ + 1) − 6ρ cos θ − 1 ≤ 0

It is easy to show that this last inequality holds for all ρ ≤ ( 2 − 1)/2). Hence, by
applying Theorem 1 we deduce the following result:

Corollary 1
If λ ∈ C with |λ| ≤ ( 2 − 1)/2 = 0.2071 . . . and if L is the integral
operator defined by F = L(f), where
F (z) =

1
z 2 eλz2

Z

z
0

tf(t)dt

then L (Σ∗1 ) ⊂ Σ∗1 .

References
[1] H.Al–Amiri, P.T.Mocanu, Integral operators preserving meromorphic starlike
functions, Mathematica (Cluj-Romania) (to appear).
[2] E.Draghici, An integral operator preserving meromorphic starlike functions, (to
appear).
[3] S.S.Miller, P.T.Mocanu, Second order differential inequalities in the complex
plane, J.Math.Anal.Appl. 65(1978), pp.289–305.
[4] S.S.Miller, P.T.Mocanu, Differential subordinations and inequalities in the complex plane, J. of Diff.Equs., 67, 2(1987), pp 199–211.
[5] S.S.Miller, P.T.Mocanu, The theory and applications of second order differential
subordinations, Studia Univ. Babe¸s-Bolyai, Math., 34, 4(1989), pp. 3–33.
[6] T.J.Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. ,
37(1979), pp. 775–777.

Department of Mathematics
“Lucian Blaga”–University
2400, Sibiu
Romania.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52