Paper-7-Acta24.2010. 117KB Jun 04 2011 12:03:14 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 63-72

ON ORLICZ FUNCTIONS OF GENERALIZED DIFFERENCE
SEQUENCE SPACES

Ahmad H. A. Bataineh and Alaa A. Al-Smadi
Abstract. In this paper, we define the sequence spaces : [V, M, p, ∆nu , s],
[V, M, p, ∆nu , s]0 and [V, M, p, ∆nu , s]∞ , where for any sequence x = (xn ), the dif∞
ference sequence ∆x is given by ∆x = (∆xn )∞
n=1 = (xn − xn−1 )n=1 . We also examine some inclusion relations between these spaces and discuss some properties and
results related to them.
2000 Mathematics Subject Classification:40D05, 40A05.
1.Introduction and definitions
Let X be a linear space. A function p : X → R is called paranorm if the following
are satisfied :
(i) p(0) ≥ 0
(ii) p(x) ≥ 0 for all x ∈ X

(iii) p(x) = p(−x) for all x ∈ X
(iv) p(x + y) ≤ p(x) + p(y) for all x ∈ X ( triangle inequality )
(v) if (λn ) is a sequence of scalars with λn → λ (n → ∞) and (xn ) is a sequence
of vectors with p(xn −x) → 0 (n → ∞), then p(λn xn −λx) → 0 (n → ∞) ( continuity
of multiplication by scalars ).
A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well known
that the metric of any linear metric space is given by some total paranorm (cf.[11]).
Let Λ = (λn ) a nondecreasing sequence of positive reals tending to infinity and
λ1 = 1 and λn+1 ≤ λn + 1.
The generalized de la Vall˙ee-Poussin means is defined by :
tn (x) =

1 X
xk ,
λn
k∈In

where In = [n − λn + 1, n]. A sequence x = (xk ) is said to be (V, λ)−summable to a
number l ( see [2] ) if tn (x) → l, as n → ∞.
63


A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

We write
1 X
| xk |= 0}
n λn
k∈In
1 X
[V, λ] = {x = (xk ) : lim
| xk − le |= 0, for some l ∈ C}
n λn

[V, λ]0 = {x = (xk ) : lim

k∈In

and
[V, λ]∞ = {x = (xk ) : sup
n


1 X
| xk |< ∞}.
λn
k∈In

For the set of sequences that are strongly summable to zero, strongly summable
and strongly bounded by the de la Vall˙ee-Poussin method. If λn = n for n =
1, 2, 3, · · · , then these sets reduce to ω 0 , ω and ω ∞ introduced and studied by Maddox
[5].
Following Lidenstrauss and Tzafriri [4], we recall that an Orlicz function M is
continuous, convex, nondecreasing function defined for x ≥ 0 such that M (0) = 0
and M (x) ≥ 0 for x > 0.
If convexity of M is replaced by M (x + y) ≤ M (x) + M (y), then it is called a
modulus function, defined and studied by Nakano [8], Ruckle [10], Maddox [6] and
others.
An Orlicz function M is said to satisfy the ∆2 −condition for all values of u, if
there exist a constant K > 0 such that
M (2u) ≤ KM (u) (u ≥ 0).
It is easy to see that always K > 2. The ∆2 −condition is equivalent to the

satisfaction of the inequality
M (lu) ≤ KlM (u),
for all values of u and for l > 1.
Lidenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the
Orlicz sequence space :
lM := {x = (xk ) :


X
k=1

M(

| xk |
) < ∞, for some ρ > 0},
ρ

which is a Banach space with the norm :

64


A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

k x kM = inf{ρ > 0 :


X

M(

k=1

| xk |
) ≤ 1}.
ρ

xp , 1

If M (x) =
≤ p < ∞, the space lM coincide with the classical sequence

space lp .
Parashar and Choudhary [9] have introduced and examined some properties
of four sequence spaces defined by using an Orlicz function M, which generalized
the well-known Orlicz sequence space lM and strongly summable sequence spaces
[C, 1, p], [C, 1, p]0 and [C, 1, p]∞ .
Let M be an Orlicz function, p = (pk ) be any sequence of strictly positive real
numbers and u = (uk ) be any sequence such that uk 6= 0(k = 1, 2, · · · ) . Then
Alsaedi and Bataineh [1] defined the following sequence spaces :
P
|uk ∆xk −le| pk
[V, M, p, u, ∆] = {x = (xk ) : limn λ1n ∞
)] = 0,
k∈In [M (
ρ
for some l and ρ > 0},
[V, M, p, u, ∆]0 = {x = (xk ) : limn

0},
and


[V, M, p, u, ∆]∞

1
λn

P∞

k∈In [M (

|uk ∆xk | pk
)]
ρ

= 0, for some ρ >


1 X
| uk ∆xk | pk
= {x = (xk ) : sup
[M (

)] < ∞, for some ρ > 0}.
λ
ρ
n
n
k∈In

Now, if n is a nonnegative integer and s is any real number such that s ≥ 0, then
we define the following sequence spaces :
n

[V, M, p, ∆nu , s] = {x = (xk ) : limn
for some l, ρ > 0 and s ≥ 0},

1
λn

P∞

k −s [M ( |∆u xρk −le| )]pk = 0,


[V, M, p∆nu , s]0 = {x = (xk ) : limn
for some ρ > 0 and s ≥ 0},
and

1
λn

P∞

k −s [M ( |∆uρxk | )]pk = 0,

[V, M, p, ∆nu , s]∞ = {x = (xk ) : supn
for some ρ > 0 and s ≥ 0},

k∈In

n

k∈In


1
λn

P∞

k∈In

n

k −s [M ( |∆uρxk | )]pk < ∞,

where u = (uk ) is any sequence such that uk 6= 0 for each k,and
∆0u x = uk xk ,
65

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

∆1u x = uk xk − uk+1 xk+1 ,
∆2u x = ∆(∆1u x),

..
.
∆nu x = ∆(∆n−1
u x),
so that
∆nu x

=

∆nuk xk

=

n
X
r=0

 
n
(−1)
uk+r xk+r .
r
r

If n = 0 and s = 0, then these gives the spaces of Alsaedi and Bataineh [1].
2.Main results
We prove the following theorems :
Theorem 1. For any Orlicz function M and any sequence p = (pk ) of strictly
positive real numbers, [V, M, p, ∆nu , s], [V, M, p, ∆nu , s]0 and [V, M, p, ∆nu , s]∞ are linear spaces over the set of complex numbers.
Proof. We shall prove only for [V, M, p, ∆nu , s]0 . The others can be treated similarly. Let x, y ∈ [V, M, p, ∆nu , s]0 and α, β ∈ C. In order to prove the result, we need
to find some ρ > 0 such that :
lim
n

1 X −s
| α∆nu xk + β∆nu yk | pk
)] = 0.
k [M (
λn
ρ
k∈In

Since x, y ∈ [V, M, p, ∆nu , s]0 , there exists some positive ρ1 and ρ2 such that :
lim
n

1 X −s
1 X −s
| ∆n xk | pk
| ∆n yk | pk
)] = 0 and lim
)] = 0.
k [M ( u
k [M ( u
n λn
λn
ρ1
ρ2
k∈In

k∈In

66

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

Define ρ = max(2 | α | ρ1 , 2 | β | ρ2 ). Since M is nondecreasing and convex,
| α∆nu xk + β∆nu yk | pk
1 X −s
)]
k [M (
λn
ρ
k∈In



1 X −s
| α∆nu xk | | β∆nu yk | pk
+
)]
k [M (
λn
ρ
ρ



| ∆n yk | pk
| ∆n xk |
1 X −s 1
) + M( u
)]
[M ( u
k
p
λn
2k
ρ1
ρ2



| ∆n yk | pk
| ∆n xk |
1 X −s
) + M( u
)]
k [M ( u
λn
ρ1
ρ2

k∈In

k∈In

≤ K.

k∈In

1 X −s
1 X −s
| ∆n xk | pk
| ∆n yk | pk
k [M ( u
k [M ( u
)] + K.
)] → 0,
λn
ρ1
λn
ρ2
k∈In

k∈In

as n → ∞, where K = max(1, 2H−1 ), H = sup pk , so that αx+βy ∈ [V, M, p, ∆nu , s]0 .
This completes the proof.
Theorem 2. For any Orlicz function M and a bounded sequence p = (pk ) of
strictly positive real numbers, [V, M, p, ∆nu , s]0 is a total paranormed space with :
g(x) = inf{ρpn /H : (

1 X −s
| ∆n xk | pk 1/H
k [M ( u
)] )
≤ 1, n = 1, 2, 3, · · · },
λn
ρ
k∈In

where H = max(1, sup pk ).
Proof. Clearly g(x) = g(−x). By using Theorem 2.1, for α = β = 1, we get
g(x+y) ≤ g(x)+g(y). Since M (0) = 0, we get inf{ρpn /H } = 0 for x = 0. Conversely,
suppose g(x) = 0, then :
inf{ρpn /H : (

1 X −s
| ∆n xk | pk 1/H
)] )
≤ 1} = 0.
k [M ( u
λn
ρ
k∈In

This implies that for a given ǫ > 0, there exists some ρǫ (0 < ρǫ < ǫ) such that :
(

| ∆n xk | pk 1/H
1 X −s
k [M ( u
)] )
≤ 1.
λn
ρǫ
k∈In

Thus,
(

1 X −s
1 X −s
| ∆n xk | pk 1/H
| ∆n xk | pk 1/H
)] )
≤(
)] )
≤ 1, for each n.
k [M ( u
k [M ( u
λn
ǫ
λn
ρǫ
k∈In

k∈In

67

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...
n

Suppose that xnm 6= 0 for some m ∈ In , then ( ∆u xǫ nm ) → ∞. It follows that :
(

1 X −s
| ∆n xn |
k [M ( u m )]pk )1/H → ∞
λn
ǫ
k∈In

which is a contradiction. Therefor xnm = 0 for all m. Finally we prove that scalar
multiplication is continuous. Let µ be any complex number, then by definition,
g(µx) = inf{ρpn /H : (

1 X −s
| µ∆nu xk | pk 1/H
)] )
≤ 1, n = 1, 2, 3, · · · }.
k [M (
λn
ρ
k∈In

Then
n
P
g(µx) = inf{(| µ | t)pn /H : ( λ1n k∈In k −s [M ( |µ∆tu xk | )]pk )1/H ≤ 1 ≤ 1, n = 1, 2, 3, · · · },
where t = ρ/ | µ | . Since | µ |pn ≤ max(1, | µ |sup pn ), we have
g(µx) ≤ (max(1, | µ |sup pn ))1/H . inf{(t)pn /H
1 X −s
| ∆n xk | pk 1/H
:(
k [M ( u
)] )
≤ 1, n = 1, 2, 3, · · · }
λn
t
k∈In

which converges to zero as x converges to zero in [V, M, p, ∆nu , s]0 .
Now suppose µm → 0 and x is fixed in [V, M, p, ∆nu , s]0 . For arbitrary ǫ > 0, let
N be a positive integer such that
| ∆n xk | pk
1 X −s
)] < (ǫ/2)H for some ρ > 0 and all n > N.
k [M ( u
λn
ρ
k∈In

This implies that
| ∆n xk | pk
1 X −s
)] < ǫ/2 for some ρ > 0 and all n > N.
k [M ( u
λn
ρ
k∈In

Let 0 N, we get
1 X −s
1 X −s
| µ∆nu xk | pk
| ∆n xk | pk
)] <
)] < (ǫ/2)H .
k [M (
k [| µ | M ( u
λn
ρ
λn
ρ
k∈In

k∈In

Since M is continuous everywhere in [0, ∞), then for n ≤ N,
f (t) =

1 X −s
| t∆nu xk | pk
)]
k [M (
λn
ρ
k∈In

68

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...
is continuous at zero. So there exists 1 > δ > 0 such that | f (t) |< (ǫ/2)H for
0 < t < δ.
Let K be such that | µm |< δ for m > K and n ≤ N, then
(

1 X −s
| µ ∆n xk | pk 1/H
)] )
< ǫ/2.
k [M ( m u
λn
ρ
k∈In

Thus
(

| µ ∆n xk | pk 1/H
1 X −s
)] )
< ǫ,
k [M ( m u
λn
ρ
k∈In

for m > K and all n, so that g(µx) → 0 (µ → 0).
Theorem 3. For any Orlicz function M which satisfies the ∆2 −condition, we
have [V, λ, ∆nu , s] ⊆ [V, M, ∆nu , s], where
P
[V , λ, ∆nu , s] = {x = (x k ) : limn λ1n k∈In k −s | ∆nu xk −le |= 0 , for some l ∈C}.
Proof. Let x ∈ [V, λ, ∆nu , s]. Then
Tn =

1 X −s
k | ∆nu xk − le |→ 0 as n → ∞, for some l.
λn
k∈In

Let ǫ > 0 and choose δ with 0 < δ < 1 such that M (t) < ǫ for 0 ≤ t ≤ δ. Write
yk =| ∆nu xk − le | and consider
X X
1 X −s
k M (| yk |) =
+
,
λn
1

k∈In

2

where the first summation over yk ≤ δ and the second over yk > δ. Since M is
continuous,
X
< λn ǫ
1

and for yk < δ, we use the fact that yk < yk /δ < 1 + yk /δ. Since M is nondecreasing
and convex, it follows that
1
1
M (yk ) < M (1 + δ −1 yk ) < M (2) + M (2δ −1 yk ).
2
2
Since M satisfies the ∆2 −condition, there is a constant K > 2 such that M (2δ −1 yk ) ≤
−1
1
2 Kδ yk M (2), therefor
1
1
Kδ −1 yk M (2) + Kδ −1 yk M (2)
2
2
= Kδ −1 yk M (2).

M (yk ) <

69

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

Hence
X
2

which together with
the proof.

P

1

M (yk ) ≤ Kδ −1 M (2)λn Tn

≤ ǫλn yields [V, λ, ∆nu , s] ⊆ [V, M, ∆nu , s]. This completes

The method of the proof of Theorem 3 shows that for any Orlicz function
M which satisfies the ∆2 −condition, we have [V, λ, ∆nu , s]0 ⊆ [V, M, ∆nu , s]0 and
[V, λ, ∆nu , s]∞ ⊆ [V, M, ∆nu , s]∞ , where
[V, λ, ∆nu , s]0 = {x = (xk ) : lim

1 X −s
k | ∆nu xk |= 0},
λn

[V, λ, ∆nu , s]∞ = {x = (xk ) : sup

1 X −s
k | ∆nu xk |< ∞}.
λn

n

k∈In

and

n

k∈In

Theorem 4. Let 0 ≤ pk ≤ qk and (qk /pk ) be bounded. Then [V, M, q, ∆nu , s] ⊂
[V, M, p, ∆nu , s].
Proof. The proof of Theorem 4 used the ideas similar to those used in
proving Theorem 7 of Parashar and Choudhary [9].Mursaleen [7] introduced the
concept of statistical convergence as follows :
A sequence x = (xk ) is said to be λ−statistically convergent or sλ −statistically
convergent to L if for every ǫ > 0,
lim
n

1
| {k ∈ In :| xk − L |≥ ǫ} |= 0,
λn

where the vertical bars indicates the number of elements in the enclosed set. In this
case we write sλ −lim x = L or xk → L (sλ ) and sλ = {x : ∃L ∈ R:sλ −lim x = L}.In
a similar way, we say that a sequence x = (xk ) is said to be (λ, ∆nu )−statistically
convergent or sλ (∆nu )−statistically convergent to L if for every ǫ > 0,
lim
n

1
| {k ∈ In :| ∆nu xk − Le |≥ ǫ} |= 0,
λn

where the vertical bars indicates the number of elements in the enclosed set. In this
case we write sλ (∆nu ) − lim x = Le or ∆nu xk → Le (sλ ) and sλ (∆nu ) = {x : ∃L ∈
R:sλ (∆nu ) − lim x = Le}.
Theorem 5. For any Orlicz function M, [V, M, ∆nu , s] ⊂ sλ (∆nu ).

70

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...
Proof. Let x ∈ [V, M, ∆nu , s] and ǫ > 0. Then
1 X −s
| ∆n xk − le |
k M( u
) ≥
λn
ρ
k∈In



1
λn

X

k∈In ,|∆n
u xk −le|≥ǫ

M(

| ∆nu xk − le |
)
ρ

1
M (ǫ/ρ). | {k ∈ In :| ∆nu xk − le |≥ ǫ} |
λn

from which it follows that x ∈ sλ (∆nu ).
To show that sλ (∆nu ) strictly contain
[V, M, ∆nu , s], we proceed as in [7]. We

define x = (xk ) by (xk ) = k if n − [ λn ] + 1 ≤ k ≤ n and (xk ) = 0 otherwise. Then
x∈
/ l∞ (∆nu , s) and for every ǫ (0 < ǫ ≤ 1),

1
[ λn ]
n
| {k ∈ In :| ∆u xk − 0 |≥ ǫ} |=
→ 0 as n → ∞
λn
λn
i.e. x → 0 (sλ (∆nu )), where [ ] denotes the greatest integer function. On the other
hand,
| ∆n xk − 0 |
1 X −s
) → ∞ as n → ∞
k M( u
λn
ρ
k∈In

i.e. xk 9 0

[V, M, ∆nu , s].

This completes the proof.

References
[1] Alsaedi, Ramzi S. and Bataineh, Ahmad H. A., Some generalized difference
sequence spaces defined by a sequence of Orlicz functions, Aust. J. Math. Analy.
& Appli. (AJMAA), Volume 5, Issue 2, Article 2, pp. 1-9, 2008.
¨
[2] Leindler, L., Uber
de la Pousinsche summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Hung. 16(1965),375-378.
[3] Lindenstrauss, J., Some aspects of the theory of Banach spaces, Advances in
Math., 5 ( 1970 ), 159-180.
[4] Lindenstrauss, J., and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math.,
10 ( 3 ) ( 1971 ), 379-390.
[5] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford
Ser. (2), 18(1967), 345-355.
[6] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil.
Soc., 100(1986), 161-166.
71

A.H. A. Bataineh, A. A. Al-Smadi - On Orlics functions of generalized difference...

[7] Mursaleen, λ-statistical convergence, Math. Slovaca 50, No. 1(2000), 111-115.
[8] Nakano, H., Concave modulus, J. Math. Soc. Japan 5(1953), 29-49.
[9] Parashar, S. D., and Choudhary, b., Sequence spaces defined by Orlicz functions,
Indian J. pure appl. Math., 25 ( 4 ) ( 1994 ), 419-428.
[10] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded,
Can. J. Math., 25 ( 5 ) ( 1973 ), 973-978.
[11] Wilansky, A., Summability through Functional Analysis, North-Holland Math.
Stud., 85(1984).
Ahmad H. A. Bataineh and Alaa A. Al-Smadi
Faculty of Science
Department of Mathematics
Al al-Bayt University
P.O. Box : 130095 Mafraq, Jordan
email : [email protected]

72

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52