vol18_pp264-273. 125KB Jun 04 2011 12:06:03 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

THE SYMMETRIC MINIMAL RANK SOLUTION OF THE MATRIX
EQUATION AX = B AND THE OPTIMAL APPROXIMATION∗
QING-FENG XIAO† , XI-YAN HU† , AND LEI ZHANG†

Abstract. By applying the matrix rank method, the set of symmetric matrix solutions with
prescribed rank to the matrix equation AX = B is found. An expression is provided for the optimal
approximation to the set of the minimal rank solutions.

Key words. Symmetric matrix, Matrix equation, Maximal rank, Minimal rank, Fixed rank
solutions, Optimal approximate solution.

AMS subject classifications. 65F15, 65F20.


1. Introduction. We first introduce some notation to be used. Let C n×m denote the set of all n × m complex matrices; Rn×m denote the set of all n × m real
matrices; SRn×n and ASRn×n be the sets of all n × n real symmetric and antisymmetric matrices respectively; ORn×n be the sets of all n × n orthogonal matrices. The
symbols AT , A+ , A− , R(A), N (A) and r(A) stand, respectively, for the transpose,
Moore-Penrose generalized inverse, any generalized inverse, range (column space),
null space and rank of A ∈ Rn×m . The symbols EA and FA stand for the two projectors EA = I − AA− and FA = I − A− A induced by A. The matrices I and 0 denote,
respectively, the identity and zero matrices of sizes implied by the context. We use
< A, B >= trace(B T A) to define the inner product of matrices A and B in Rn×m .
Then Rn×m is an inner product Hilbert space. The norm of a matrix generated by the

1
inner product is the Frobenius norm ·, that is, A = < A, A > = (trace(AT A)) 2 .
Ranks of solutions of linear matrix equations have been considered previously
by several authors. For example, Mitra [1] considered solutions with fixed ranks for
the matrix equations AX = B and AXB = C; Mitra [2] gave common solutions of
minimal rank of the pair of matrix equations AX = C, XB = D; Uhlig [3] gave the
maximal and minimal ranks of solutions of the equation AX = B; Mitra [4] examined
common solutions of minimal rank of the pair of matrix equations A1 X1 B1 = C1 and
A2 X2 B2 = C2 . Recently, by applying the matrix rank method, Tian [5] obtained
∗ Received


by the editors February 25, 2009. Accepted for publication May 9, 2009. Handling
Editor: Ravindra B. Bapat.
† College of Mathematics and Econometrics, Hunan University, Changsha 410082, P.R. of China
([email protected]). Research supported by National Natural Science Foundation of China (under
Grant 10571047) and the Doctorate Foundation of the Ministry of Education of China (under Grant
20060532014).
264

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

The Symmetric Minimal Rank Solution of the Matrix Equation AX = B

265


the minimal rank among solutions to the matrix equation A = BX + Y C. Theoretically speaking, the general solution of a linear matrix equation can be written as
linear matrix expressions involving variant matrices. Hence the maximal and minimal
ranks among the solutions of a linear matrix equation can be determined through the
corresponding linear matrix expressions.
Motivated by the work in [1,3], in this paper, we derive the minimal and maximal
rank among symmetric solutions to the matrix equation AX = B and obtain the
symmetric matrix solution with prescribed rank. In addition, in corresponding minimal rank solution set of the equation, an explicit expression for the nearest matrix
to a given matrix in the Frobenius norm is provided.
The problems studied in this paper are described below.
Problem I. Given X ∈ Rn×m , B ∈ Rn×m , and a positive integer s, find A ∈
SRn×n such that AX = B, and r(A) = s. Moreover, when the solution set S1 = {A ∈
SRn×n |AX = B} is nonempty, find
˜ = max r(A),
m
˜ = min r(A), M
A∈S1

A∈S1

and determine the symmetric minimal rank solution in S1 , that is Sm

˜ = {A | r(A) =
m,
˜ A ∈ S1 }.
Problem II. Given A∗ ∈ Rn×n , find A˜ ∈ Sm
˜ such that
˜ = min ||A∗ − A||.
||A∗ − A||
A∈Sm
˜

The paper is organized as follows. First, in Section 2, we will introduce several
lemmas which will be used in the later sections. Then, in Section 3, applying the
matrix rank method, we will discuss the rank of the general symmetric solution to
the matrix equation AX = B, where X, B are given matrices in Rn×m . Based on this,
the symmetric solution set with prescribed ranks to the matrix equation AX = B
will be presented. Lastly, in Section 4, an expression for the optimal approximation
to the set of the minimal rank solution Sm
˜ will be provided.
2. Some lemmas. The following lemmas are essential for deriving the solution
to Problem 1.

Lemma 2.1. [6] Let A, B, C, and D be m × n, m × k, l × n, l × k matrices,
respectively. Then
(2.1)

r



A
C



= r(A) + r(C(I − A− A)),

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA


http://math.technion.ac.il/iic/ela

266

Q.F. Xiao, X.Y. Hu, and L. Zhang

(2.2) r



A
C

B
D



=r




A
C



+r



A

B



− r(A) + r[EG (D − CA− B)FH ],


where G = CFA and H = EA B.
Lemma 2.2. [7] Assume K ∈ Rm×n , Y ∈ Rp×m are full-column rank matrices,
Z ∈ Rn×q is full-row rank matrix. Then
r(K) = r(Y K) = r(KZ) = r(Y KZ).

Lemma 2.3. [7] Suppose that L ∈ Rn×n satisfies L2 = L. Then
r(L) = trace(L).

Lemma 2.4. [7]
r(M M + ) = r(M ).

Lemma 2.5. [7] Given S ∈ Rm×n , and J ∈ Rk×m , W ∈ Rl×n satisfying J T J =
Im , W T W = In , then
(JSW T )+ = W S + J T .

Lemma 2.6 (8). Given X, B ∈ Rn×m , let the singular value decompositions of
X be


Σ 0

V T = U1 ΣV1T ,
X=U
(2.3)
0 0
where U = (U1 , U2 ) ∈ ORn×n , U1 ∈ Rn×k , V = (V1 , V2 ) ∈ ORm×m , V1 ∈ Rm×k ,
k = r(X), Σ = diag(σ1 , σ2 , · · · σk ), σ1 ≥ · · · ≥ σk > 0. Then AX = B is solvable in
SRn×n if and only if
(2.4)

BV2 = 0, X T B = B T X,

and its general solution can be expressed as
 T

U1 BV1 Σ−1 Σ−1 V1T B T U2
A=U
UT ,
U2T BV1 Σ−1
A22


∀A22 ∈ SR(n−k)×(n−k) .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

The Symmetric Minimal Rank Solution of the Matrix Equation AX = B

267

3. General expression of the solutions to Problem I. Now consider Problem 1 and suppose that (2.4) holds. Then the general symmetric solution of the
equation AX = B can be expressed as
A=U

(3.1)




A11
A21

A12
A22



UT

where
A11 = U1T BV1 Σ−1 ∈ SRk×k ,

A12 = Σ−1 V1T B T U2 ∈ Rk×(n−k)

and
A21 = U2T BV1 Σ−1 ∈ R(n−k)×k
satisfy
A11 = AT11 , A21 = AT12 , A22 = AT22 .
By Lemma 2.2 and the orthogonality of U , we obtain
r(A) = r

(3.2)



A11
A21

A12
A22



.

Let
r



A11
A21



+r



A11

A12



− r(A11 ) = t.

Applying (2.2) to A in (3.2), we have
r(A) = t + r[EG1 (A22 − A21 A+
11 A12 )FH1 ],

where G1 = A21 (I − A−
11 A11 ), H1 = (I − A11 A11 )A12 . Thus the minimal and the
maximal ranks of A relative to A22 are, in fact, determined by the term EG1 (A22 −
A21 A+
11 A12 )FH1 . It is quite easy to see that

(3.3)

min r(A) = min r[EG1 (A22 − A21 A+
11 A12 )FH1 ] + t,

(3.4)

max r(A) = max r[EG1 (A22 − A21 A+
11 A12 )FH1 ] + t.

A

A

A22

A22

Since A11 = AT11 , A12 = AT21 , we have G1 = H1T . By EG1 = I − G1 G+
1,
T
FH1 = I − H1+ H1 , it is easy to verify that EG
.
=
E
=
F
G
H
1
1
1

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

268

Q.F. Xiao, X.Y. Hu, and L. Zhang

By Lemma 2.2 and BV2 = 0, A11 = AT11 , we have
(3.5) r

(3.6)



A11
A21





A11

r

= r(U T BV1 Σ−1 ) = r(BV1 ) = r(B(V1 , V2 )) = r(BV ) = r(B),

A12



=r



AT11

A12



= r(Σ−1 V1T B T U ) = r(BV1 )

= r(B(V1 , V2 )) = r(BV ) = r(B),

(3.7)

r(A11 ) = r(U1T BV1 Σ−1 ) = r(ΣU1T BV1 ) = r(V1 ΣU1T B(V1 , V2 ))
= r(X T BV ) = r(X T B).

By (3.2), (3.3) and Lemma 1, when r[EG1 (A22 − A21 A+
11 A12 )FH1 ] = 0, r(A) is
minimal. By (3.5), (3.6), (3.7) we know that the minimal rank of symmetric solution
for the matrix equation AX = B is
m
˜ = 2r(B) − r(X T B).

(3.8)

If the matrix A22 satisfies r[EG1 (A22 − A21 A+
11 A12 )FH1 ] = 0, we obtain the expression of the symmetric minimal rank solution. Let
A22 = A21 A+
11 A12 + N.

(3.9)

where N ∈ SR(n−k)×(n−k) satisfies EG1 N FH1 = 0. Then the symmetric minimal
rank solution of the matrix equation AX = B can be expressed as
(3.10)

A = BX + + (BX + )T (I − XX + ) + U2 A22 U2T ,

where A22 is as (3.9).
When r[EG1 (A22 − A21 A+
11 A12 )FH1 ] is maximal, we can obtain the expression
for the symmetric maximal rank solution of the matrix equation AX = B. Since
EG1 = FH1 , and r[EG1 (A22 − A21 A+
11 A12 )EG1 ] being maximal is equivalent to r(A)
being maximal, we have
(3.11)

max r[EG1 (A22 − A21 A+
11 A12 )EG1 ] = r(EG1 ).
A22

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

The Symmetric Minimal Rank Solution of the Matrix Equation AX = B

269

Since EG1 is an idempotent matrix, by Lemma 2.3, 2.4, 2.5, we have
r(EG1 ) = trace(EG1 ) = n − k − r(G1 G+
1 ) = n − k − r(G1 )
= n − k − r(A21 (I − A+
11 A11 ))


A11
=n−k−r
+ r(A11 )
A21

= n − k − r(B) + r(X T B) = n − r(X) − r(B) + r(X T B).
By (3.2), (3.4), (3.5), (3.6), (3.7) and Lemma 2.1, we know the maximal rank of
symmetric solution of the matrix equation AX = B is
(3.12)

˜ = n + r(B) − r(X).
M

Similar to the discussion of the minimal rank solution, the symmetric maximal
rank solution of the matrix equation AX = B can be expressed as
(3.13)

A = BX + + (BX + )T (I − XX + ) + U2 A22 U2T ,

(n−k)×(n−k)
where A22 = A21 A+
satisfies
11 A12 + N , the arbitrary matrix N ∈ SR
T
r(EG1 N EG1 ) = n + r(X B) − r(X) − r(B).

Combining the above, we can immediately obtain the following theorem about
the general solution to Problem 1.
Theorem 3.1. Given X, B ∈ Rn×m , and a positive integer s, consider the
singular value decomposition of X in (2.3). Then AX = B has symmetric solution
with rank of s if and only if
(3.14)

BX + X = B, X T B = B T X,

(3.15)

2r(B) − r(X T B) ≤ s ≤ n + r(B) − r(X).

Moreover, the general solution can be written as
(3.16)

A = BX + + (BX + )T (I − XX + ) + U2 A22 U2T ,

where U2 ∈ Rn×(n−k) , U2T U2 = In−k , N (X T ) = R(U2 ), and A22 = A21 A+
11 A12 + N ,
N ∈ SR(n−k)×(n−k) satisfies r(EG1 N EG1 ) = s + r(X T B) − 2r(B).
Now we discuss further the expression of the symmetric minimal rank solution of
AX = B and the solution set Sm
˜ . From the foregoing analysis, we know that given

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

270

Q.F. Xiao, X.Y. Hu, and L. Zhang

X, B ∈ Rn×m , if the singular value decomposition of X is as in (2.3), and AX = B
satisfies (2.4), then the minimal rank of symmetric solution is 2r(B) − r(X T B). Also
the symmetric minimal rank solution can expressed as
T
T
A = BX + + (BX + )T (I − XX + ) + U2 A21 A+
11 A12 U2 + U2 N U2 ,

(3.17)

where N ∈ SR(n−k)×(n−k) satisfies EG1 N EG1 = 0.
Next we will discuss (3.17) further.
Equation (3.1) says A11 = U1T BV1 Σ−1 , A12 = Σ−1 V1T B T U2 , A21 = U2T BV1 Σ−1 .
Combining (2.3) and Lemma 2.5, we obtain

X + = V1 Σ−1 U1T , XX + = U1 U1T ,

(3.18)
that is,

T
XX +BX + = U1 U1T BV1 Σ−1 U1T = U1 A11 U1T ⇒ (XX + BX + )+ = U1 A+
11 U1 .

Thus
T
+
+ +
A+
11 = U1 (XX BX ) U1 ,

(3.19)
hence

T
T
−1 T
U2 A21 A+
U1 (XX + BX + )+ U1 Σ−1 V1T B T U2 U2T
11 A12 U2 = U2 U2 BV1 Σ

= (I − XX +)BX + (XX + BX + )+ (BX + )T (I − XX + ).
Substituting the above formula into (3.17), we obtain that the symmetric minimal
rank solution of AX = B can be expressed as
(3.20)

A = A0 + U2 N U2T ,

where A0 = BX + +(BX + )T (I −XX + )+(I −XX + )BX + (XX + BX + )+ (BX + )T (I −
XX + ), and N ∈ SR(n−k)×(n−k) satisfies EG1 N EG1 = 0.
Assume the singular value decomposition of G1 = A21 (I − A+
11 A11 ) is


Γ 0
(3.21)
QT = P1 ΓQT1 ,
G1 = P
0 0

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

The Symmetric Minimal Rank Solution of the Matrix Equation AX = B

271

where
P = (P1 , P2 ) ∈ OR(n−k)×(n−k) ,
Q1 ∈ Rk×t ,

t = r(G1 ),

P1 ∈ R(n−k)×t ,

Q = (Q1 , Q2 ) ∈ ORk×k ,

Γ = diag(α1 , α2 , · · · αt ),

α1 ≥ · · · ≥ αt > 0.

Then
(3.22)

T
T
T
G1 G+
1 = P1 P1 , EG1 = I − P1 P1 = P2 P2 .

Thus from EG1 N EG1 = 0, i.e., P2 P2T N P2 P2T = 0, we have

N = P1 P1T M P1 P1T ,

(3.23)

where M ∈ SR(n−k)×(n−k) is arbitrary.
Substituting (3.23) into (3.20), we can obtain the following theorem.
Theorem 3.2. Given X, B ∈ Rn×m , assume the singular value decomposition
of X is as in (2.3). If (2.4) is satisfied and the singular value decomposition of G1
is as in (3.21), then the minimal rank of the symmetric solution of AX = B is
2r(B) − r(X T B), and the expression of the symmetric minimal rank solution is
A = A0 + U2 P1 P1T M P1 P1T U2T ,

(3.24)

where A0 = BX + +(BX + )T (I −XX + )+(I −XX +)BX + (XX + BX + )+ (BX + )T (I −
XX + ), and M ∈ SR(n−k)×(n−k) is arbitrary.
4. The expression of the solution to Problem II. From (3.24), it is easy
˜
to verify that Sm
˜ is a closed convex set. Therefore there exists a unique solution A
˜
to Problem II. Now we give an expression for A.
The symmetric matrix set SRn×n is a subspace of Rn×n . Let (SRn×n )⊥ be the
orthogonal complement space of SRn×n . Then for any A∗ ∈ Rn×n , we have
A∗ = A∗1 + A∗2

(4.1)

where A∗1 ∈ SRn×n , A∗2 ∈ (SRn×n )⊥ . Partition the symmetric matrices
U T A0 U, U T A∗1 U
as
(4.2)

U T A0 U =



A01
A03

A02
A04



,

U T A∗1 U =



A∗11
A∗21

A∗12
A∗22



,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

272

Q.F. Xiao, X.Y. Hu, and L. Zhang

where A01 ∈ SRk×k and A∗11 ∈ SRk×k . Then we have the following theorem.
Theorem 4.1. Given X, B ∈ Rn×m , assume the singular value decomposition of
X is as in (2.3). Assume (2.4) is satisfied, the singular value decomposition of G1 is
˜
as in (3.21) and let A∗ ∈ Rn×n be given. Then Problem II has a unique solution A,
which can be written as
A˜ = A0 + U2 P1 P1T (A∗22 − A04 )P1 P1T U2T ,

(4.3)

where A0 = BX + +(BX + )T (I −XX + )+(I −XX +)BX + (XX + BX + )+ (BX + )T (I −
XX + ),and A∗22 , and A04 are given by (4.2).
Proof. For any A∗ ∈ Rn×n , we have
A∗ = A∗1 + A∗2 ,

(4.4)

where A∗1 ∈ SRn×n ,A∗2 ∈ (SRn×n )⊥ .
Utilizing the invariance of Frobenius norm for orthogonal matrices, for A ∈ Sm
˜,
T
T
T
T
T
T
by (3.24), (4.2) and P1 P1 + P2 P2 = I, P1 P1 P2 P2 = 0, where P1 P1 , P2 P2 are
orthogonal projection matrices, we obtain
||A∗ − A||2 = ||A∗1 + A∗2 − A||2 = ||A∗1 − A||2 + ||A∗2 ||2 .

(4.5)

Thus min  A∗ − A  is equivalent to min  A∗1 − A . Also
A∈Sm
˜

A∈Sm
˜


2
||A∗1 − A||2 = A∗1 − A0 − U2 P1 P1T M P1 P1T U2T 
2



 ∗

0
0
T

= A1 − A0 − U
U 
T
T
0 P1 P1 M P1 P1


2

 T ∗
0
0
T

A
U

U
A
U

=
U
0
1
T
T


0 P1 P1 M P1 P1
 ∗
2
 
 

 A11 A∗12
A01 A02
0
0



=
T
T

 A∗ A∗
0 P1 P1 M P1 P1
A03 A04
22
21
2

2

= A∗11 − A01  + A∗12 − A02  + A∗21 − A03 
2

+ A∗22 − A04 − P1 P1T M P1 P1T 

2


2
2
2
2
= A∗11 − A01  + A∗12 − A02  + A∗21 − A03  + (A∗22 − A04 )P2 P2T 

2
+ (A∗22 − A04 )P1 P1T − P1 P1T M P1 P1T 

2
= A∗11 − A01 2 + A∗12 − A02 2 + A∗21 − A03 2 + (A∗22 − A04 )P2 P2T 
2
2 

+ P2 P2T (A∗22 − A04 )P1 P1T  + P1 P1T (A∗22 − A04 )P1 P1T − P1 P1T M P1 P1T  .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 264-273, May 2009

ELA

http://math.technion.ac.il/iic/ela

The Symmetric Minimal Rank Solution of the Matrix Equation AX = B

273

Hence min  A∗ − A  is equivalent to
A∈Sm
˜

(4.6)

min

M∈SR(n−k)×(n−k)



P1 P1T (A∗22 − A04 )P1 P1T − P1 P1T M P1 P1T  .

Obviously, the solution of (4.6) can be written as
(4.7)

P2 P T , ∀M
 ∈ SR(n−k)×(n−k)
M = A∗22 − A04 + P2 P2T M
2

Substituting (4.7) into (3.24), we get that the unique solution to Problem II can be
expressed as in (4.3).
REFERENCES

[1] S.K. Mitra. Fixed rank solutions of linear matrix equations. Sankhya, Ser. A., 35:387–392, 1972.
[2] S.K. Mitra. The matrix equation AX = C, XB = D. Linear Algebra Appl., 59:171–181, 1984.
[3] F. Uhlig. On the matrix equation AX = B with applications to the generators of controllability
matrix. Linear Algebra Appl., 85:203–209, 1987.
[4] S.K. Mitra. A pair of simultaneous linear matrix equations A1 X1 B1 = C1 , A2 X2 B2 = C2 and a
matrix programming problem. Linear Algebra Appl., 131:107–123, 1990.
[5] Y. Tian. The minimal rank of the matrix expression A − BX − Y C. Missouri J. Math. Sci.,
14:40–48, 2002.
[6] Y. Tian. The maximal and minimal ranks of some expressions of generalized inverses of matrices.
Southeast Asian Bull. Math., 25:745–755, 2002.
[7] S.G. Wang, M.X. Wu, and Z.Z. Jia. Matrix Inequalities. Science Press, 2006.
[8] L. Zhang. A class of inverse eigenvalue problems of symmetric matrices. Numer. Math. J. Chinese
Univ., 12(1):65–71, 1990.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52