Paper-9-Acta23.2010. 107KB Jun 04 2011 12:03:15 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 99-105

ON L1 −CONVERGENCE OF THE R−TH DERIVATIVE OF COSINE
SERIES WITH SEMI-CONVEX COEFFICIENTS

Xhevat Z. Krasniqi and Naim L. Braha
Abstract. We study L1 -convergence of r − th derivative of modified sine sums
introduced by K. Kaur [2] and deduce some corollaries.
2000 Mathematics Subject Classification: 42A20, 42A32.
1. Introduction and Preliminaries
Let



a0 X
+
ak cos kx

2

(1)

k=1

be cosine trigonometric series with its partial sums denoted by Sn (x) = a20 +
P
n
k=1 ak cos kx, and let f (x) = limn→∞ Sn (x).
For convenience, in the following of this paper we shall assume that a0 = 0.
A sequence (an ) is said to be semi-convex, or briefly (an ) ∈ (SC), if an → 0 as
n → ∞, and

X
n|∆2 an−1 + ∆2 an | < ∞,
n=1

where ∆2 ak = ak − 2ak+1 + ak+2 .
We shall generalize the class of sequences (SC) in the following manner:


A sequence (an ) is said to be semi-convex of order r, (r = 0, 1, . . . ) or (an ) ∈
(SC)r , if an → 0 as n → ∞, and

X

nr+1 |∆2 an−1 + ∆2 an | < ∞.

n=1

It is clear that (SC) ⊂ (SC)r , (r = 1, 2, . . . ) and (SC) ≡ (SC)0 .
99

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

R. Bala and B. Ram [1] have proved that for series (1) with semi-convex null
coefficients the following theorem holds true.
Theorem A. If (an ) is a semi-convex null sequence, then for the convergence of
the cosine series (1) in the metric L1 , it is necessary and sufficient that an−1 log n =
o(1), n → ∞.

Later on, K. Kaur [2] introduced new modified sine sums as
n

Kn (x) =

n

1 XX
(∆aj−1 − ∆aj+1 ) sin kx,
2 sin x
k=1 j=k

where ∆aj = aj − aj+1 , and studied the L1 -convergence of this modified sine sum
with semi-convex coefficients proving the following theorem.
Theorem B. Let (an ) be a semi-convex null sequence, then Kn (x) converges to
f (x) in L1 -norm.
The main goal of the present work is to study the L1 -convergence of r − th
derivative of these new modified sine sums with semi-convex null coefficients of
order r and to deduce the sufficient condition of Theorem A and Theorem B as
corollaries.

As usually with Dn (x) and D̃n (x) we shall denote the Dirichlet and its conjugate
kernels defined by
n

Dn (x) =

1 X
+
cos kx,
2

D̃n (x) =

k=1

n
X

sin kx.


k=1

Everywhere in this paper the constants in the O-expression denote positive constants and they may be different in different relations.
To prove the main results we need the following lemmas:
Lemma 1. ([3]) For the r-th derivatives of the Dirichlet’s kernels Dn (x) and
D̃n (x) the following estimates hold
(r)

(1) kDn (x)kL1 = π4 nr log n + O(nr ), r = 0, 1, 2, . . .
(r)

(2) kD̃n (x)kL1 = O (nr log n), r = 0, 1, 2, . . .

100

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

Lemma 2. If x ∈ [ǫ, π − ǫ], ǫ ∈ (0, π) and m ∈ N , then the following estimate
holds


!(r)


D̃m (x)

= Or,ǫ mr+1 , (r = 0, 1, 2 . . . )


2 sin x


where Or,ǫ depends only on r and ǫ.

Proof. By Leibniz formula we have
!(r)
(r−i) 
r  
(i)
X
D̃m (x)

r
1
=
D̃m (x)
i
2 sin x
2 sin x
i=0



(r−i) X


r
m
X
r
1


i
=
j sin jx +
2 sin x
2
i
i=0
j=1
(r−i)
r  
X
r
1
r+1
.
= O(1)m
2 sin x
i

(2)


i=0

(τ )
τ (cos x)
1
= Psin
We shall prove by mathematical induction the equality 2 sin
τ +1 x ,
x
where Pτ is a cosine polynomial of degree τ .
′
cos x
(cos x)
1
= (−1/2)
Namely, we have 2 sin
= P1sin
2 x , so that for τ = 1 the above
x

sin2 x
equality is true.
(τ ) Pτ (cos x)
1
= sinτ +1 x holds. For the (τ +1)−th
Assume that the equality F (x) := 2 sin
x
1
derivative of 2 sin
we
get
x


F (x) :=
 ′
− sinτ +2 x Pτ (cos x) − (r + 1)Pτ (cos x) sinτ x cos x
=
sin2τ +2 x


(− sin2 x)Pτ (cos x) − (τ + 1)Pτ (cos x) cos x
=
sinτ +2 x

(cos2 x − 1)Pτ (cos x) − (τ + 1)Pτ (cos x) cos x
=
sinτ +2 x
Pτ +1 (cos x)
=
,
sinτ +2 x
where Pτ +1 (cos x), is a cosine polynomial of the degree τ + 1.
Therefore for x ∈ [ǫ, π − ǫ], ǫ > 0, from (2) dhe (3) we obtain

!(r)

r  
X
D̃m (x)


r |Pr−i (cos x)|
r+1

= O(1)m
= Or,ǫ mr+1 .
2 sin x

r−i+1
i sin
x


i=0
101

(3)

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

2.Main Results
At the begining we prove the following result:
(r)

Theorem 1. Let (an ) be a semi-convex null sequence of order r, then Kn (x)
converges to g (r) (x) in L1 -norm.
Proof. We have
n

Kn (x) =
=

n

1 XX
(∆aj−1 − ∆aj+1 ) sin kx
2 sin x
k=1 j=k
" n
#
X
1
(ak−1 − ak+1 ) sin kx − (an − an+2 ) D̃n (x) .
2 sin x
k=1

Applying Abel’s transformation (see [4], p. 17), we get
n

Kn (x) =

1 X
(∆ak−1 − ∆ak+1 ) D̃k (x)
2 sin x
k=1

=

1
2 sin x

n
X
k=1


∆2 ak−1 + ∆2 ak D̃k (x).

Therefore,
Kn(r) (x)

=

n
X

2

2

∆ ak−1 + ∆ ak

k=1



D̃k (x)
2 sin x

!(r)

.

(4)

On the other side we have
n

n

k=1

k=1

1 X
1 X
Sn (x) =
ak cos kx sin x =
ak [sin(k + 1)x − sin(k − 1)x]
sin x
2 sin x
n

sin(n + 1)x
sin nx
1 X
+ an
(ak−1 − ak+1 ) sin kx + an+1
=
2 sin x
2 sin x
2 sin x
k=1

=

1
2 sin x

n
X

(∆ak−1 + ∆ak ) sin kx + an+1

k=1

102

sin(n + 1)x
sin nx
+ an
.
2 sin x
2 sin x

(5)

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

Applying Abel’s transformation to the equality (5) we get
n
X

Sn (x) =

∆2 ak−1 + ∆2 ak

k=1

+ (an − an+2 )

 D̃k (x)
2 sin x

sin nx
sin(n + 1)x
D̃n (x)
+ an+1
+ an
.
2 sin x
2 sin x
2 sin x

Thus
!(r)

(x)
k
∆2 ak−1 + ∆2 ak
Sn(r) (x) =
+ (an − an+2 )
2 sin x
k=1




sin nx (r)
sin(n + 1)x (r)
+an+1
+ an
.
2 sin x
2 sin x
n
X



D̃n (x)
2 sin x

!(r)
(6)

By Lemma 1 and since (an ) is semi-convex null sequence of order r, we have

!(r)




(x)
n

(an − an+2 )


2
sin
x


!



X





= Or,ǫ (n + 1)r+1 (an − an+2 ) = Or,ǫ (n + 1)r+1
(∆ak − ∆ak+2 )
k=n

= Or,ǫ




X


r+1
(n
+
1)
(∆a

∆a
)

k−1
k+1
k=n+1

= Or,ǫ


X

!

k r+1 |∆2 ak−1 + ∆2 ak |

k=n+1

!

= o(1), n → ∞.

(7)

Also after some elementary calculations and by virtue of Lemma 2 we obtain
an+1


= an+1 

D̃n (x)
2 sin x

!(r)






sin(n + 1)x (r)
=
2 sin x

!(r) 
!(r)

(x)
D̃n−1 (x)
n+1
 + an 

2 sin x
2 sin x

sin nx
2 sin x

(r)

+ an



!(r) 
D̃n (x)

2 sin x



= an+1 Or,ǫ nr+1 + (n − 1)r+1 + an Or,ǫ (n + 1)r+1 + nr+1

= Or,ǫ (n + 1)r+1 (an + an+1 )
103

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

= Or,ǫ (n + 1)r+1 [(an − an+2 ) + (an+1 − an+3 ) + (an+2 − an+4 ) + · · · ]
!


X
X
= Or,ǫ
k r+1 |∆2 ak−1 + ∆2 ak | +
k r+1 |∆2 ak−1 + ∆2 ak | + · · · = o(1), n → ∞.
k=n+1

k=n+2

(8)
Because of (7) and (8), when we pass on limit as n → ∞ to (4) and (6) we get
g (r) (x) =

lim Sn(r) (x)

n→∞

lim Kn(r) (x) =

=

n→∞


X

∆2 ak−1 + ∆2 ak

k=1



D̃k (x)
2 sin x

!(r)

.

(9)

Using Lemma 2, from (4) and (9) we have
Z

π

−π

= 2

Z

0

= Or,ǫ




(r)
g (x) − Kn(r) (x) dx

π

!(r)

D̃k (x)

dx

2 sin x
k=n+1
!

X


k r+1 ∆2 ak−1 + ∆2 ak = o(1), n → ∞,



X

2
∆ ak−1 + ∆2 ak


k=n+1

which fully proves the Theorem 1.
Remark 1. If we replace r = 0 in Theorem 1 we get Theorem B.
Corollary 1. Let (an ) ∈ (SC)r , then the sufficient condition for L1 -convergence
of the r − th derivative of the series (1) is nr an log n = o(1), as n → ∞.
Proof. We have






(r)





g (x) − Sn(r) (x)

g (r) (x) − Kn(r) (x)
+
Kn(r) (x) − Sn(r) (x)

104

Xh. Z. Krasniqi, N. L. Braha - On L1 −convergence of the r−th derivative of...

!(r)





(x)
n

= o(1) +


(an − an+2 ) 2 sin x








sin nx (r)
sin(n + 1)x (r)


+
an+1
+ an
(by Theorem 1)


2 sin x
2 sin x




≤ o(1) + an
D̃n(r) (x)
(by (7))

= o(1) + O (nr an log n) = o(1).

(by Lemma 1)

Remark 2. If we replace r = 0 in Corollary 1 we get the sufficient condition of
Theorem A.
Acknowledgments: The authors would like to thank the anonymous referee
for his/her valuable comments and suggestions to improve this article.
References
[1] Bala R. and Ram B., Trigonometric series with semi-convex coefficients,
Tamkang J. Math. 18 (1) (1987), 75-84.
[2] Kaur K., Bhatia S. S. , and Ram B., Integrability and L1 -convergence of
modified sine sums, Georgian Math. J. 11, No. 1, (2004), 99-104.
[3] S. Sheng, The extension of the theorems of Č. V. Stanojević and V. B. Stanojević, Proc. Amer. Math. Soc. 110 (1990), 895-904.
[4] Bary K. N., Trigonometric series, Moscow, (1961)(in Russian).
Xhevat Z. Krasniqi
Faculty of Education
University of Prishtina
Agim Ramadani St., Prishtinë, 10000, Kosova
email: [email protected]
Naim L. Braha
Department of Mathematics and Computer Sciences
University of Prishtina
Avenue ”Mother Theresa ” 5, Prishtinë, 10000, Kosova
email: [email protected]

105

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52