balasubramanian. 77KB Jun 04 2011 12:08:23 AM

An alternate proof of Hall’s theorem on a
conformal mapping inequality
R. Balasubramanian

S. Ponnusamy∗

In this note we give a different and direct proof of the following result of Hall
[2], which actually implies the conjecture of Sheil-Small [3]. For details about the
related problems we refer to [1, 3].
THEOREM. Let f be regular for |z| < 1 and f(0) = 0. Further, let f be starlike
of order 1/2. Then
Z r
π
|f ′ (ρeiθ )|dρ < |f(reiθ )|
2
0
for every r < 1 and real θ.
Proof. As in [2, p.125] (see also [1]), to prove our result it suffices to show that
J = I(t, τ ) + I(τ, t) < π − 2 for 0 < t < τ < π

(1)


where
I(t, τ ) =

Z

0

1

2| sin(t/2)|

1 − 2ρ cos t + ρ2

(

)

1
1 − ρ cos τ



dρ.
1 − 2ρ cos τ + ρ2 1 − 2ρ cos τ + ρ2

To evaluate these integrals we define k by
sin2 (τ /2) − sin2 (t/2)
k =
cos2 (t/2) sin2 (τ /2)
2



This work has been done with the support of National Board for Higher Mathematics.
Received by the editors May 1995.
Communicated by R. Delanghe.
1991 Mathematics Subject Classification : Primary:30C45; Secondary:30C35.
Key words and phrases : Starlike and conformal mappings.

Bull. Belg. Math. Soc. 3 (1996), 209–213


210

R. Balasubramanian – S. Ponnusamy

so that
cos t =
and

cos τ + k 2 sin2 (τ /2)
1 − k 2 sin2 (τ /2)

(2)

(1 − k 2 ) sin2 (τ /2)
sin (t/2) =
.
1 − k 2 sin2 (τ /2)
2


Further we let

ρ=

π−τ
sin θ
, 0≤θ≤
.
sin(θ + τ )
2

(3)

(The idea of change of variables already occurs in [2, 3]). Then, from (2) and (3),
we easily have
sin τ

dρ =
2
sin (θ + τ )

|1 − ρeiτ |2 =

sin2 τ
= 1 − 2ρ cos τ + ρ2
sin2 (θ + τ )

|1 − ρeit|2 =
and
1 − ρ cos t =
After some work we find that

sin2 τ [1 − k 2 sin2(θ + τ /2)]
sin2 (θ + τ )[1 − k 2 sin2(τ /2)]

sin τ [cos θ − k 2 sin(τ /2) sin(θ + τ /2)]
.
sin(θ + τ )[1 − k 2 sin2 (τ /2)]

J = I(t, τ ) + I(τ, t) =


Z

(π−τ )/2

0

H(k, τ, θ)dθ

(4)

where
v
u

u 1 − k 2 sin2 (τ /2)
1
cos θ − k 2 sin(τ /2) sin(θ + τ /2)
t
H(k, τ, θ) =


+
cos(τ /2)
1 − k 2 sin2 (θ + τ /2)
1 − k 2 sin2 (θ + τ /2)
q

We put

(1 − k 2 )(1 − cos θ)



.
+q
2
2
1 − k sin (θ + τ /2)

π−τ


2

to obtain
J =

Z

=

Z

(π−τ )/2

0

where F and G are defined by
F (k, λ, θ)

0


λ

H(k, τ,

π−τ
− θ)dθ
2

[F (k, λ, θ) + G(k, λ, θ)]dθ

(5)

211

An alternate proof of Hall’s theorem on a conformal mapping inequality

s




1  1 − k 2 cos2 λ cos(λ − θ) − k 2 cos λ cos θ 
=

sin λ
1 − k 2 cos2 θ
1 − k 2 cos2 θ

(1 − k 2) sin2 (λ − θ)
1


=
sin λ (1 − k 2 cos2 θ)[ 1 − k 2 cos2 λ 1 − k 2 cos2 θ + cos(λ − θ) − k 2 cos λ cos θ]
"

and


1 − k 2(1 − cos(λ − θ))


G(k, λ, θ) =
.
sin λ 1 − k 2 cos2 θ

Therefore
∂J
=
∂λ

#

Z

0

λ

∂F (k, λ, θ)
dθ +
∂λ

λ

Z

0

∂G(k, λ, θ)
dθ + F (k, λ, λ) + G(k, λ, λ).
∂λ

Since F (k, λ, λ) = 0 = G(k, λ, λ) the above becomes
∂J
=
∂λ

Z

0

λ

∂F
dθ +
∂λ

Z

0

λ

∂G
dθ.
∂λ

A simple calculation shows that

[

s

(1 − k 2 ) sin(λ − θ)
1 − k 2 cos2 θ
∂F
=
{cos(λ − θ) sin λ + sin θ
∂λ
(1 − k 2 cos2 θ)X 2
1 − k 2 cos2 λ
o
−k 2 cos λ sin(λ + θ) − k 2 cos θ sin(λ + θ) + cos(λ − θ) sin θ + sin λ

]

where X is the denominator of the second expression in F (k, λ, θ).
Since the right hand side of the above expression is a decreasing function of k
for each k in (0, 1) and since the square bracketed term in this expression for k = 1
is positive, we have

∂F
∂F
= 0.
(6)


∂λ
∂λ k=1
Similarly we have



∂G
∂G


= 0.
∂λ
∂λ k=1

Thus to prove (1), by (5), (6) and the above, it is sufficient to prove that
Z

0

π/2

[F (k, π/2, θ) + G(k, π/2, θ)]dθ ≤ π − 2,

or equivalently
Z π/2
Z π/2 √

1 − sin θ
1 − k 2 cos2 θ − sin θ
2

dθ ≤ π − 2.

+
1

k
1 − k 2 cos2 θ
0
0
1 − k 2 cos2 θ

(7)

(Note that this corresponds
to τ = 0 in (4) or (5) ). In the first of the above integrals

2
we put tan θ = y 1 − k so that it becomes

Z ∞
1 + y2 − y
q
dy
0
(1 + y 2) 1 + (1 − k 2 )y 2

212

R. Balasubramanian – S. Ponnusamy

which, by substituting y = tan θ, yields
Z

π/2



0

Put

1 − sin θ

1 − k 2 sin2 θ

dθ.


#
1 − k2
1
L(k, θ) = (1 − sin θ) √
.
+√
1 − k 2 cos2 θ
1 − k 2 sin2 θ
"

Therefore (7) is now equivalent to
Z

π/4

L(k, θ)dθ =

Z

=

Z

π/4

π/2

0

L(k, θ)dθ +

0

0

Z

π/2

π/4

L(k, θ)dθ

[L(k, θ) + L(k, π/2 − θ)]dθ

≤ π − 2.
Note that
Z

0

π/2

L(0, θ)dθ = π − 2.

It is therefore suffices to prove that


L(k, θ) +
L(k, π/2 − θ) ≤ 0,
∂k
∂k
for all 0 ≤ θ ≤ π/4. For this we easily find that
∂L(k, θ) ∂L(k, π/2 − θ)
+
∂k
∂k

= k(1 − sin θ)(1 − cos θ)[(1 − k 2 sin2 θ)−3/2 { 1 − k 2 (1 + cos θ) − (1 + sin θ)}

+ (1 − k 2 cos2 θ)−3/2 { 1 − k 2 (1 + sin θ) − (1 + cos θ)}](1 − k 2 )−1/2 .
Since the inequalities
(1 − k 2 cos2 θ)−3/2 ≥ (1 − k 2 sin2 θ)−3/2
and
1 + cos θ −



1 − k 2 (1 + sin θ) ≥ −(1 + sin θ) +



1 − k 2 (1 + cos θ)

hold for 0 ≤ θ ≤ π/4, (8) follows easily. This finishes the proof of the theorem.

(8)

An alternate proof of Hall’s theorem on a conformal mapping inequality

213

References
[1] R. BALASUBRAMANIAN, V. KARUNAKARAN and S. PONNUSAMY, A
proof of Hall’s conjecture on starlike mappings, J. London Math. Soc. (2)
48(1993), 278-288.
[2] R.R. HALL, A conformal mapping inequality for starlike functions of order 1/2,
Bull. London Math. Soc. 12 (1980) 119-126.
[3] T. SHEIL-SMALL, Some conformal mapping inequalities for starlike and convex
functions, J. London Math. Soc. (2) 1 (1969) 577-587.

R. Balasubramanian
Institute of Mathematical Sciences
C.I.T. Campus, Madras -600 113, INDIA.
S. Ponnusamy
Department of Mathematics
PO. BOX 4 (Yliopistonkatu 5)
00014 University of Helsinki, Finland.
e-mail:samy@geom.helsinki.fi

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52