article12_5. 186KB Jun 04 2011 12:06:56 AM

Journal de Th´eorie des Nombres
de Bordeaux 18 (2006), 223–239

An arithmetic formula of Liouville
par Erin McAFEE et Kenneth S. WILLIAMS
´sume
´. Une preuve ´el´ementaire est donn´ee d’une formule arithRe
m´etique qui fut pr´esent´ee mais non pas prouv´ee par Liouville. Une
application de cette formule donne une formule pour le nombre de
repr´esentations d’un nombre entier positif comme ´etant la somme
de douze nombres triangulaires.
Abstract. An elementary proof is given of an arithmetic formula, which was stated but not proved by Liouville. An application of this formula yields a formula for the number of representations of a positive integer as the sum of twelve triangular
numbers.
This paper is dedicated to the memory of Joseph Liouville (1809-1882).

1. Introduction
In his famous series of eighteen articles, Liouville [3] gave without proof
numerous arithmetic formulae. These formulae are summarized in Dickson’s History of the Theory of Numbers [1, Volume 2, Chapter XI], where
references to proofs are given. The formula we are interested in involves a
sum over sextuples (a, b, c, x, y, z) of positive odd integers satisfying ax +
by + cz = n, where n is a fixed positive odd integer. It was stated without

proof by Liouville in [3, sixth article, p. 331] and reproduced by Dickson
[1, Volume 2, formula (M), p. 332].
Let n be a positive odd integer, and let F : Z → C be an odd function.
Then
X
(F (a + b + c) + F (a − b − c) − F (a + b − c) − F (a − b + c))
ax+by+cz=n
a,b,c,x,y,z odd

(1.1)

=

X
1X 2
σ(o(n − ax))F (a).
(d − 1)F (d) − 3
8
axy
x≡a,e≡b,y≡c


=

X

1=

X

k(x+y)+ey=n
x≡a+c, e≡b, y≡c

1=

X

1

kx+(k+e)y=n
x≡a+c, e≡b, y≡c


1 = L2 (a + c, k + b, c),

kx+ey=n
e>k
x≡a+c, e≡k+b, y≡c

as asserted.
For positive integers n and k we set

1, if k | n,
δ(n, k) =
0, if k ∤ n.
The next result is a simple consequence of Lemmas 2.1, 2.2 and 2.3.

Erin McAfee, Kenneth S. Williams

226

Lemma 2.5. If k and n are positive odd integers then



(n/k) − 1
δ(n, k).
L1 (1, 1, 0) − M1 (1, 1, 0) = L2 (1, 0, 0) − L2 (1, 1, 0) −
2
3. The equation kx + ey = n and the quantities R1 , R2 , R3 , S1 , S2 , S3
In this section we introduce the quantities R1 , R2 , R3 , S1 , S2 , S3 formed
from L1 , L2 , L3 , M1 , M2 , M3 respectively by taking the sums over e rather
than 1.
Definition 3.1.
R1 (a, b, c) =

X

e, R2 (a, b, c) =

X

e, S1 (a, b, c) =


X

e, S3 (a, b, c) =

kx+ey=n
ey
x≡a,e≡b,y≡c

e,

X

e,

X

e.

kx+ey=n

e>k
x≡a,e≡b,y≡c

kx+ey=n
xk



 d≡k+b
n/d≡a

The following lemma gives a relationship between R2 (a, b, c) and
S2 (a, b, c). The proof is similar to that of Lemma 2.4.

An arithmetic formula of Liouville

227

Lemma 3.4.
S2 (a, b, c) = R2 (a + c, k + b, c) − kL2 (a + e, k + b, c).

The values of R3 (1, 1, 0) and S3 (1, 1, 0) when k and n are both odd follow
easily from Lemmas 3.2 and 3.3.
Lemma 3.5. If k and n are positive odd integers then


n−k
δ(n, k), S3 (1, 1, 0) = 0.
R3 (1, 1, 0) =
2
4. Solutions of kx + by + cz = n (k, n fixed odd integers)
Throughout this section k and n are restricted to be positive odd integers.
We are concerned with solutions (x, b, y, c, z) ∈ N5 of
kx + by + cz = n
with b, c, x odd and y, z even. For such solutions we have b+c 6= k, b−c 6= k
and x 6= z, so that
X
X
X
1
1+

1=
kx+by+cz=n
b+c>k
b,c,x odd, y,z even

kx+by+cz=n
b+ck, xk, y=z
b,c,x odd, y,z even

where we used the transformation (b, y, c, z) → (c, z, b, y) in the last step.
We now examine the above two sums. Firstly, we have
X
X
1=
1
kx+by+cz=n
b+c>k, y=z
b,c,x odd, y,z even

kx+(b+c)y=n

b+c>k
b,c,x odd, y even

=

=

X e
2
e even
1
2

X

1

kx+ey=n
e>k
x odd, y even


X

e

kx+ey=n
e>k
x≡1,e≡0,y≡0

1
= R2 (1, 0, 0),
2
by Definition 3.1, and secondly,
X
1=
kx+by+cz=n
b+c>k, y>z
b,c,x odd, y,z even

X


1

(y = z + y ′ )

X

1

(y = y ′ )

kx+b(z+y ′ )+cz=n
b+c>k
b,c,x odd, y ′ ,z even

=

kx+by+(b+c)z=n
b+c>k
b,c,x odd, y,z even

=

X

kx+by+ez=n
e=b+c,e>k
b,c,x odd, e,y,z even

1

Erin McAfee, Kenneth S. Williams

230

=

X

1

X

1

(e = k + c′ )

X

1

(c = c′ )

X

1

(x′ = x + z)

kx+by+ez=n
e>b,e>k
b,x odd, e,y,z even

=

kx+by+(k+c′ )z=n
k+c′ >b
b,c′ ,x odd, y,z even

=

k(x+z)+by+cz=n
b−c

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52