Paper2-Acta25-2011. 133KB Jun 04 2011 12:03:16 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 31-40

CERTAIN DIFFERENTIAL SUPERORDINATIONS USING A
GENERALIZED SĂLĂGEAN AND RUSCHEWEYH OPERATORS

Alb Lupaş Alina
Abstract. In the present paper we define a new operator using the generalized
Sălăgean and Ruscheweyh operators. Denote by DRλm the Hadamard product of
the generalized Sălăgean operator Dλm and the Ruscheweyh operator Rm , given
by DRλm : A → A, DRλm f (z) = (Dλm ∗ Rm ) f (z) and An = {f ∈ H(U ), f (z) =
z +an+1 z n+1 +. . . , z ∈ U } is the class of normalized analytic functions with A1 = A.
We study some differential superordinations regarding the operator DRλm .
2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.
Keywords: Differential superordination, convex function, best subordinant, differential operator.
1. Introduction and definitions
Denote by U the unit disc of the complex plane U = {z ∈ C : |z| < 1} and H(U )
the space of holomorphic functions in U .

Let
An = {f ∈ H(U ), f (z) = z + an+1 z n+1 + . . . , z ∈ U }
with A1 = A and
H[a, n] = {f ∈ H(U ), f (z) = a + an z n + an+1 z n+1 + . . . , z ∈ U }
for a ∈ C and n ∈ N.
If f and g are analytic functions in U , we say that f is superordinate to g, written
g ≺ f , if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that g(z) = f (w(z)) for all z ∈ U . If f is univalent, then g ≺ f if and only if
f (0) = g(0) and g(U ) ⊆ f (U ).
Let ψ : C2 × U → C and h analytic in U . If p and ψ (p (z) , zp′ (z) ; z) are
univalent in U and satisfies the (first-order) differential superordination
h(z) ≺ ψ(p(z), zp′ (z); z),

31

for z ∈ U,

(1)

A. Alb Lupaş - Certain differential superordinations using a generalized...


then p is called a solution of the differential superordination. The analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant, if q ≺ p for all p satisfying (1). An univalent subordinant qe
that satisfies q ≺ qe for all subordinants q of (1) is said to be the best subordinant of
(1). The best subordinant is unique up to a rotation of U .
Definition 1 (Al Oboudi [4]) For f ∈ A, λ ≥ 0 and m ∈ N, the operator Dλm is
defined by Dλm : A → A,
Dλ0 f (z) = f (z)
Dλ1 f (z) = (1 − λ) f (z) + λzf ′ (z) = Dλ f (z)
...


= (1 − λ) Dλm−1 f (z) + λz (Dλm f (z))′ = Dλ Dλm−1 f (z) , f or z ∈ U.
P
j
m
Remark 1 If f ∈ A and f (z) = z + ∞
j=2 aj z , then Dλ f (z) = z +
P∞

m
j
j=2 [1 + (j − 1) λ] aj z , for z ∈ U .
Remark 2 For λ = 1 in the above definition we obtain the Sălăgean differential
operator [7].
Definition 2 (Ruscheweyh [6]) For f ∈ A, m ∈ N, the operator Rm is defined by
Rm : A → A,
Dλm f (z)

R0 f (z) = f (z)
R1 f (z) = zf ′ (z)
...
f (z) = z (Rm f (z))′ + mRm f (z) , z ∈ U.
P
P∞
m
j
j
m
Remark 3 If f ∈ A, f (z) = z + ∞

j=2 aj z , then R f (z) = z +
j=2 Cm+j−1 aj z ,
z ∈ U.
Definition 3 ([5]) We denote by Q the set of functions that are analytic and injective
on U \E (f ), where E (f ) = {ζ ∈ ∂U : lim f (z) = ∞}, and f ′ (ζ) 6= 0 for ζ ∈
(m + 1) R

m+1

z→ζ

∂U \E (f ). The subclass of Q for which f (0) = a is denoted by Q (a).
We will use the following lemmas.
Lemma 1 (Miller and Mocanu [5]) Let h be a convex function with h(0) = a, and
let γ ∈ C\{0} be a complex number with Re γ ≥ 0. If p ∈ H[a, n] ∩ Q, p(z) + γ1 zp′ (z)
is univalent in U and
h(z) ≺ p(z) +

1 ′
zp (z),

γ

for z ∈ U,

then
q(z) ≺ p(z),

for z ∈ U,
32

A. Alb Lupaş - Certain differential superordinations using a generalized...
Rz
where q(z) = nzγγ/n 0 h(t)tγ/n−1 dt, for z ∈ U. The function q is convex and is the
best subordinant.
Lemma 2 (Miller and Mocanu [5]) Let q be a convex function in U and let h(z) =
q(z) + γ1 zq ′ (z), for z ∈ U, where Re γ ≥ 0.
If p ∈ H [a, n] ∩ Q, p(z) + γ1 zp′ (z) is univalent in U and
q(z) +

1

1 ′
zq (z) ≺ p(z) + zp′ (z) ,
γ
γ

for z ∈ U,

then
q(z) ≺ p(z),
where q(z) =

γ
nz γ/n

Rz
0

for z ∈ U,

h(t)tγ/n−1 dt, for z ∈ U. The function q is the best subordinant.

2. Main results

Definition 4 ([2]) Let λ ≥ 0 and m ∈ N. Denote by DRλm the operator given by
the Hadamard product (the convolution product) of the generalized Sălăgean operator
Dλm and the Ruscheweyh operator Rm , DRλm : A → A,
DRλm f (z) = (Dλm ∗ Rm ) f (z) .
P
j
Remark 4 If f ∈ A and f (z) = z + ∞
j=2 aj z , then
P

m
m
DRλm f (z) = z + j=2 Cm+j−1
[1 + (j − 1) λ] a2j z j , for z ∈ U .
Remark 5 For λ = 1 we obtain the Hadamard product SRn [1] of the Sălăgean
operator S n and Ruscheweyh operator Rn .
Theorem 1 Let h be a convex function, h(0) = 1. Let λ ≥ 0, m ∈ N, f ∈ A and supm(1−λ)
m+1

DRλm+1 f (z) − (mλ+1)z
DRλm f (z) is univalent and (DRλm f (z))′ ∈
pose that (mλ+1)z
H [1, 1] ∩ Q. If
h(z) ≺

m+1
m (1 − λ)
DRλm+1 f (z) −
DRλm f (z) ,
(mλ + 1) z
(mλ + 1) z

for z ∈ U,

(2)

then
q(z) ≺ (DRλm f (z))′ ,
where q(z) =


1
m+ λ
1
z m+ λ

Rz
0

for z ∈ U,

1

h (t) tm−1+ λ dt. The function q is convex and it is the best

subordinant.
P
m
m
Proof. With notation p (z) = (DRλm f (z))′ = 1+ ∞

j=2 Cm+j−1 [1 + (j − 1) λ] ·

ja2j z j−1 and p (0) = 1, we obtain for f (z) = z +
33

P∞

j=2 aj z

j,

A. Alb Lupaş - Certain differential superordinations using a generalized...

m(1−λ)

m+1
1
m
m
DR

f
(z)

m

1
+
p (z) + zp′ (z) = m+1
λ
λz
λ (DRλ f (z)) −
λz DRλ f (z)
m(1−λ)
λ
m+1
and p (z) + mλ+1
zp′ (z) = (mλ+1)z
DRλm+1 f (z) − (mλ+1)z DRλm f (z) .
Evidently p ∈ H[1, 1].
Then (2) becomes
h(z) ≺ p (z) +

λ
zp′ (z) ,
mλ + 1

By using Lemma 1 for γ = m +
q(z) ≺ p(z),
1
z m+ λ

0

and n = 1, we have

i.e. q(z) ≺ (DRλm f (z))′ ,

for z ∈ U,
Rz

1
m+ λ

where q(z) =

1
λ

for z ∈ U.

for z ∈ U,

1

h (t) tm−1+ λ dt. The function q is convex and it is the best

subordinant.
Corollary 1 ([3]) Let h be a convex function, h(0) = 1. Let n ∈ N, f ∈ A
n
z (SRn f (z))′′ is univalent and (SRn f (z))′ ∈
and suppose that z1 SRn+1 f (z) + n+1
H [1, 1] ∩ Q. If
h(z) ≺

1
n
SRn+1 f (z) +
z (SRn f (z))′′ ,
z
n+1

for z ∈ U,

(3)

then
q(z) ≺ (SRn f (z))′ ,

for z ∈ U,

R
1 z

where q(z) = z 0 h(t)dt. The function q is convex and it is the best subordinant.
λ
Theorem 2 Let q be convex in U and let h be defined by h (z) = q (z) + mλ+1
zq ′ (z),

m(1−λ)
m+1
DRλm+1 f (z) − (mλ+1)z
·
λ ≥ 0, m ∈ N. If f ∈ A, suppose that (mλ+1)z

m
m
DRλ f (z) is univalent, (DRλ f (z)) ∈ H [1, 1] ∩ Q and satisfies the differential superordination

h(z) = q (z)+

m+1
m (1 − λ)
λ
zq ′ (z) ≺
DRλm+1 f (z)−
DRλm f (z) , (4)
mλ + 1
(mλ + 1) z
(mλ + 1) z

for z ∈ U, then
q(z) ≺ (DRλm f (z))′ ,
1
m+ λ

Rz

for z ∈ U,

1

h (t) tm−1+ λ dt. The function q is the best subordinant.
P
m
m
2 j−1 .
Proof. Let p (z) = (DRλm f (z))′ = 1 + ∞
j=2 Cm+j−1 [1 + (j − 1) λ] jaj z

where q(z) =

1
z m+ λ

0


m+1
Differentiating, we obtain p (z) + zp′ (z) = m+1
f (z) − m − 1 + λ1 ·
λz DRλ
m+1
m+1
λ
n

f (z) −
(DRλm f (z))′ − m(1−λ)
λz DRλ f (z) and p (z) + mλ+1 zp (z) = (mλ+1)z DRλ
34

A. Alb Lupaş - Certain differential superordinations using a generalized...
m(1−λ)
m
(mλ+1)z DRλ f

(z) , for z ∈ U and (4) becomes

q(z) +

λ
λ
zq ′ (z) ≺ p(z) +
zp′ (z) ,
mλ + 1
mλ + 1

Using Lemma 2 for γ = m +
q(z) ≺ p(z), for z ∈ U,

1
λ

for z ∈ U.

and n = 1, we have

i.e. q(z) =

m+
z

1
λ

1
m+ λ

Z

z

0

1

h (t) tm−1+ λ dt ≺ (DRλm f (z))′ ,

for z ∈ U, and q is the best subordinant.
Corollary 2 ([3]) Let q be convex in U and let h be defined by h (z) = q (z) +
n
zq ′ (z) . If n ∈ N, f ∈ A, suppose that z1 SRn+1 f (z) + n+1
z (SRn f (z))′′ is univalent,
(SRn f (z))′ ∈ H [1, 1] ∩ Q and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺

1
n
SRn+1 f (z) +
z (SRn f (z))′′ ,
z
n+1

for z ∈ U,

(5)

then
q(z) ≺ (SRn f (z))′ ,

for z ∈ U,

R
1 z

where q(z) = z 0 h(t)dt. The function q is the best subordinant.
Theorem 3 Let h be a convex function, h(0) = 1. Let λ ≥ 0, m ∈ N, f ∈ A and
m f (z)
DRλ
suppose that (DRλm f (z))′ is univalent and
∈ H [1, 1] ∩ Q. If
z
h(z) ≺ (DRλm f (z))′ ,
then
q(z) ≺
where q(z) =

1
z

Rz
0

(6)

for z ∈ U,

h(t)dt. The function q is convex and it is the best subordinant.

Proof. Consider p (z) =
1+

DRλm f (z)
,
z

for z ∈ U,

m f (z)
DRλ
z

=

z+

P∞

j=2

m
Cm+j−1
[1+(j−1)λ]m a2j z j
z

=

P∞

+ (j − 1) λ]m a2j z j−1 . Evidently p ∈ H[1, 1].
We have p (z) + zp′ (z) = (DRλm f (z))′ , for z ∈ U .
Then (6) becomes
m
j=2 Cm+j−1 [1

h(z) ≺ p(z) + zp′ (z),

for z ∈ U.

By using Lemma 1 for γ = 1 and n = 1, we have
q(z) ≺ p(z),

for z ∈ U,

i.e. q(z) ≺
35

DRλm f (z)
,
z

for z ∈ U,

A. Alb Lupaş - Certain differential superordinations using a generalized...
Rz
where q(z) = z1 0 h(t)dt. The function q is convex and it is the best subordinant.
Corollary 3 ([3]) Let h be a convex function, h(0) = 1. Let n ∈ N, f ∈ A and
n
suppose that (SRn f (z))′ is univalent and SR zf (z) ∈ H [1, 1] ∩ Q. If
h(z) ≺ (SRn f (z))′ ,
then
q(z) ≺

SRn f (z)
,
z

for z ∈ U,

(7)

for z ∈ U,

Rz
where q(z) = z1 0 h(t)dt. The function q is convex and it is the best subordinant.
Theorem 4 Let q be convex in U and let h be defined by h (z) = q (z) + zq ′ (z) . If
m f (z)
DRλ
∈ H [1, 1] ∩ Q
λ ≥ 0, m ∈ N, f ∈ A, suppose that (DRλm f (z))′ is univalent,
z
and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺ (DRλm f (z))′ ,
then
q(z) ≺
where q(z) =

1
z

Rz
0

DRλm f (z)
,
z

for z ∈ U,

(8)

for z ∈ U,

h(t)dt. The function q is the best subordinant.

Proof. Let p (z) =

m f (z)
DRλ
z

=

z+

P∞

j=2

m
Cm+j−1
[1+(j−1)λ]m a2j z j
z

=

P∞

+ (j − 1) λ]m a2j z j−1 . Evidently p ∈ H[1, 1].
Differentiating, we obtain p(z) + zp′ (z) = (DRλm f (z))′ , for z ∈ U and (8) becomes
q(z) + zq ′ (z) ≺ p(z) + zp′ (z) , for z ∈ U.

1+

m
j=2 Cm+j−1 [1

Using Lemma 2 for γ = 1 and n = 1, we have
Z
DRλm f (z)
1 z
h(t)dt ≺
, for z ∈ U,
q(z) ≺ p(z), for z ∈ U, i.e. q(z) =
z 0
z
and q is the best subordinant.
Corollary 4 ([3]) Let q be convex in U and let h be defined by h (z) = q (z)+zq ′ (z) .
n
If n ∈ N, f ∈ A, suppose that (SRn f (z))′ is univalent, SR zf (z) ∈ H [1, 1] ∩ Q and
satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺ (SRn f (z))′ ,
then
q(z) ≺

SRn f (z)
,
z
36

for z ∈ U,

for z ∈ U,

(9)

A. Alb Lupaş - Certain differential superordinations using a generalized...
Rz
where q(z) = z1 0 h(t)dt. The function q is the best subordinant.
Theorem 5 Let h(z) = 1+(2β−1)z
be a convex function in U , where 0 ≤ β < 1.
1+z
Let λ ≥ 0, m ∈ N, f ∈ A and suppose that (DRλm f (z))′ is univalent and
H [1, 1] ∩ Q. If
h(z) ≺ (DRλm f (z))′ ,
for z ∈ U,
then
q(z) ≺

DRλm f (z)
,
z

m f (z)
DRλ
z



(10)

for z ∈ U,

where q is given by q(z) = 2β − 1 + 2(1 − β) ln(1+z)
, for z ∈ U. The function q is
z
convex and it is the best subordinant.
Proof. Following the same steps as in the proof of Theorem and considering
p(z) =

m f (z)
DRλ
,
z

the differential superordination (10) becomes
h(z) =

1 + (2β − 1)z
≺ p(z) + zp′ (z),
1+z

for z ∈ U.

By using Lemma 1 for γ = 1 and n = 1, we have q(z) ≺ p(z), i.e.,
Z
Z
DRλm f (z)
1 z
1 z 1 + (2β − 1)t
1
q(z) =
h(t)dt =
dt = 2β−1+2(1−β) ln(z+1) ≺
,
z 0
z 0
1+t
z
z
for z ∈ U.
The function q is convex and it is the best subordinant.
Theorem 6 
Let h be a convex
function, h(0) = 1. Let λ ≥ 0, m ∈ N, f ∈ A and

m+1
zDRλ
f (z)
m f (z)
DRλ

suppose that



h(z) ≺

is univalent and
zDRλm+1 f (z)
DRλm f (z)

then
q(z) ≺
where q(z) =

1
z

Rz
0

m+1
DRλ
f (z)
m f (z)
DRλ

!′

DRλm+1 f (z)
,
DRλm f (z)

,

∈ H [1, 1] ∩ Q. If

for z ∈ U,

(11)

for z ∈ U,

h(t)dt. The function q is convex and it is the best subordinant.

Proof. Consider p (z) =

m+1
DRλ
f (z)
m f (z)
DRλ

P
m+1
1+ ∞
Cm+j
[1+(j−1)λ]m+1 a2j z j−1
Pj=2
.

m
1+ j=2 Cm+j−1 [1+(j−1)λ]m a2j z j−1

=

P
m+1
z+ ∞
Cm+j
[1+(j−1)λ]m+1 a2j z j
Pj=2

m
z+ j=2 Cm+j−1 [1+(j−1)λ]m a2j z j

Evidently p ∈ H[1, 1].
37

=

A. Alb Lupaş - Certain differential superordinations using a generalized...




(DRλm f (z))
(DRλm+1 f (z))

p
(z)
·
m
m f (z) .
DR f (z)
DRλ
′
 λ
m+1
zDRλ f (z)
.
Then p (z) + zp′ (z) =
DRm f (z)
We have p′ (z) =

λ

Then (11) becomes

h(z) ≺ p(z) + zp′ (z),

for z ∈ U.

By using Lemma 1 for γ = 1 and n = 1, we have
q(z) ≺ p(z),

for z ∈ U,

DRλm+1 f (z)
,
DRλm f (z)

i.e. q(z) ≺

for z ∈ U,

Rz
where q(z) = z1 0 h(t)dt. The function q is convex and it is the best subordinant.
Corollary 5 ([3]) Let h
 be a convex function, h(0) = 1. Let n ∈ N, f ∈ A and
suppose that

zSRn+1 f (z)
SRn f (z)



SRn+1 f (z)
SRn f (z)

is univalent and

h(z) ≺



zSRn+1 f (z)
SRn f (z)

then
q(z) ≺

′

SRn+1 f (z)
,
SRn f (z)

∈ H [1, 1] ∩ Q. If

for z ∈ U,

,

(12)

for z ∈ U,

Rz
where q(z) = z1 0 h(t)dt. The function q is convex and it is the best subordinant.

Theorem 7 Let q be convex in U and let
 h be defined
′ by h (z) = q (z) + zq (z) .
m+1
m+1
zDRλ
f (z)
DRλ
f (z)
If λ ≥ 0, m ∈ N, f ∈ A, suppose that
is
univalent,
m
DR f (z)
DRm f (z) ∈
λ

H [1, 1] ∩ Q and satisfies the differential superordination
!′
zDRλm+1 f (z)

,
h(z) = q (z) + zq (z) ≺
DRλm f (z)
then
q(z) ≺

where q(z) =

1
z

Rz
0

DRλm+1 f (z)
,
DRλm f (z)

λ

for z ∈ U,

for z ∈ U,

h(t)dt. The function q is the best subordinant.

Proof. Let p (z) =

m+1
DRλ
f (z)
m f (z)
DRλ

P
m+1
Cm+j
[1+(j−1)λ]m+1 a2j z j−1
1+ ∞
Pj=2
.

m
1+ j=2 Cm+j−1 [1+(j−1)λ]m a2j z j−1

=

P
m+1
Cm+j
[1+(j−1)λ]m+1 a2j z j
z+ ∞
Pj=2

m
z+ j=2 Cm+j−1 [1+(j−1)λ]m a2j z j

Evidently p ∈ H[1, 1].
38

=

(13)

A. Alb Lupaş - Certain differential superordinations using a generalized...

Differentiating, we obtain p(z) +

zp′ (z)

=

becomes



m+1
zDRλ
f (z)
m f (z)
DRλ

q(z) + zq ′ (z) ≺ p(z) + zp′ (z) ,

′

, for z ∈ U and (13)

for z ∈ U.

Using Lemma 2 for γ = 1 and n = 1, we have
q(z) ≺ p(z), for z ∈ U,

1
i.e. q(z) =
z

Z

DRλm+1 f (z)
, for z ∈ U,
DRλm f (z)

z

h(t)dt ≺

0

and q is the best subordinant.
Corollary 6 ([3]) Let q be convex
U andlet h be defined by h (z) = q (z)+zq ′ (z) .
 in n+1

n+1 f (z)
f (z)
is univalent, SR
If n ∈ N, f ∈ A, suppose that zSR
SRn f (z)
SRn f (z) ∈ H [1, 1] ∩ Q
and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺
then
q(z) ≺



zSRn+1 f (z)
SRn f (z)

SRn+1 f (z)
,
SRn f (z)

′

for z ∈ U,

,

(14)

for z ∈ U,

Rz
where q(z) = z1 0 h(t)dt. The function q is the best subordinant.
Theorem 8 Let h(z) = 1+(2β−1)z
be a convex function in U , where 0 ≤ β < 1. Let
1+z
′

m+1
m+1
DRλ
f (z)
zDRλ
f (z)
is
univalent,
λ ≥ 0, m ∈ N, f ∈ A and suppose that
m
DR f (z)
DRm f (z) ∈
λ

H [1, 1] ∩ Q. If

h(z) ≺

zDRλm+1 f (z)
DRλm f (z)

then
q(z) ≺

!′

DRλm+1 f (z)
,
DRλm f (z)

,

λ

for z ∈ U,

(15)

for z ∈ U,

, for z ∈ U. The function q is
where q is given by q(z) = 2β − 1 + 2(1 − β) ln(1+z)
z
convex and it is the best subordinant.
Proof. Following the same steps as in the proof of Theorem and considering
p(z) =

m+1
DRλ
f (z)
m f (z) ,
DRλ

the differential superordination (15) becomes

h(z) =

1 + (2β − 1)z
≺ p(z) + zp′ (z),
1+z
39

for z ∈ U.

A. Alb Lupaş - Certain differential superordinations using a generalized...

By using Lemma 1 for γ = 1 and n = 1, we have q(z) ≺ p(z), i.e.,
1
q(z) =
z

Z

0

z

1
h(t)dt =
z

Z

0

z

DRλm+1 f (z)
1 + (2β − 1)t
1
dt = 2β−1+2(1−β) ln(z+1) ≺
,
1+t
z
DRλm f (z)

for z ∈ U.
The function q is convex and it is the best subordinant.
References

[1] Alina Alb Lupaş, Adriana Cătaş, Certain differential subordinations using
Sălăgean and Ruscheweyh operators, Proceedings of International Conference on
Complex Analysis and Related Topics, The 11th Romanian-Finish Seminar, Alba
Iulia, 2008, (to appear).
[2] Alina Alb Lupaş, Certain differential subordinations using a generalized Sălăgean
operator and Ruscheweyh operator, submitted 2009.
[3] Alina Alb Lupaş, Certain differential superordinations using Sălăgean and
Ruscheweyh operators, Analele Universităţii din Oradea, Fascicola Matematica, Tom
XVII, Issue no. 2, 2010, 201-208.
[4] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean
operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.
[5] S.S. Miller, P.T. Mocanu, Subordinants of Differential Superordinations, Complex Variables, vol. 48, no. 10, 2003, 815-826.
[6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109-115.
[7] G.St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer Verlag, Berlin, 1013 (1983), 362-372.
Alb Lupaş Alina
Department of Mathematics
University of Oradea
str. Universităţii nr. 1, 410087, Oradea, Romania
email: dalb@uoradea.ro

40

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52