Paper25-Acta25-2011. 111KB Jun 04 2011 12:03:16 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 277-286

DIFFERENTIAL OPERATORS FOR P-VALENT FUNCTIONS

Mohamed K. Aouf

Abstract. Let f (z) = D(F (z)), where D is differential operator defined separtely in every result. Let S(p) denote the class of functions f (z) = z p +


P

an z n

n=p+1

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. The purpose of
this is paper to find out the disc in which the operator D transforms some classes

of p-valent functions into the same. For example, if F is p-valent starlike of order
λ(0 ≤ λ < p), then the disc in which f is also in the same class is found. We also
discuss several special cases which can be derived from our main results.
Keywords: p-Valent, analytic, starlike, close-to-convex, Bazilevic functions.
2000 Mathematics Subject Classification: 30C45.
1.Introduction
Let A(p) denote the class of functions of the form

X

f (z) = z p +

an z n

(1)

n=p+1

which are analytic in the unit disc U = {z : |z| < 1}. Further let S(p) be the subclass
of A(p) consisting of functions which are p-valent in U . A function f (z) ∈ S(p) is

said to be in the class Sp∗ (λ) of p-valently starlike functions of order λ(0 ≤ λ < p) if
it satisfies
Re
The class

Sp∗ (λ)

(



z f (z)
f (z)

)

> λ and

Z2π


Re

0

(



z f (z)
f (z)

)

dθ = 2πp .

was studied recently by Owa [8] and Aouf et al. [2].

277

(2)


M. K. Aouf - Differential Operators For p-Valent Functions

Let Kp (γ, λ) denote the class of functions F (z) ∈ A(p) which satisfy
Re

(



z F (z)
G(z)

)

> γ (z ∈ U ),

(3)

where G(z) ∈ Sp∗ (λ) and 0 ≤ γ, λ < p. The class Kp (γ, λ) of p-valenty close-toconvex functions of order γ and type λ was studied by Aouf [1]. We note that

K1 (γ, λ) = K(γ, λ), the class of convex functions of order γ and type λ was studied
by Libera [4] and K1 (1, 1) = K, is the well-known class of close-to-convex functions,
introduced by Kaplan [3].
A function F (z) ∈ S(p) is said to be in the class Bp (β, λ) if and only if there
exists a function G(z) ∈ Sp∗ (λ), 0 ≤ λ < p, β > 0, such that
Re

(



zF (z)
1−β
F
(z)Gβ (z)

)

> 0 (z ∈ U ).


(4)

The class Bp (β, λ) is the subclass of p-valently Bazilevic functions in U .
We note that Bp (β, 0) = Bp (β), is the class of p-valently Bazilevic functions of type
β and B1 (β, 0) = B(β), is the class of Bazilevic functions of type β (see [10]).
2.Main Results
We shall consider some differential operators and find out the disc in which the
classes of p-valent functions defined by (2), (3) and (4), respectively, are preserved
under these operators. We prove the following:
Theorem 1. Let F (z) ∈ Sp∗ (λ)(0 ≤ λ < p), β > 0 and 0 < α ≤ 1. Let the function
f (z) be defined by the differential operator
Dα,β,p (F ) = f β (z) =

i
h
1

(1 − α)F β (z) + α z(F β (z)) .
αβp − α + 1


(5)

Then f (z) ∈ Sp∗ (λ) for |z| < r0 , where
r0 =

[α(βp − βλ + 1) +

The result is sharp.
Proof. We can write
f β (z) =
as

p

α2 (βp

αβp − α + 1
.
− βλ + 1)2 + (αβp − α + 1)(1 − αβp + 2αβλ − α)
(6)


i
h
1

(1 − α)F β (z) + α z(F β (z)) ,
αβp − α + 1

f β (z) =

h
i
1
1
1

α z 2− α (z α −1 F β (z)) ,
αβp − α + 1

278


(7)

M. K. Aouf - Differential Operators For p-Valent Functions

and from this it follows that
1
1
F (z) = (βp + − 1) z 1− α
α

β

Zz

1

z α −2 f β (z)d z .

0


(8)

Thus, we have
1



zF (z)
1
z α −1 f β (z)
.
β
= (1 − ) + Rz
1
F (z)
α
z α −2 f β (z)d z

(9)


0

Since F (z) ∈

Sp∗ (λ),

we can write (9) as

β(p − λ)h(z)

Zz

z

1
−2
α

β

f (z)d z + βλ

= (1 −

1
)
α

1

z α −2 f β (z)d z

0

0

Zz

Zz

1

1

z α −2 f β (z)d z + z α −1 f β (z),

0

where Re h(z) > 0. Differentiating again with respect to z, we obtain




z f (z)
= (p − λ)h(z) + λ +
f (z)

Rz

1

(p − λ)h (z) z α −2 f β (z)d z
0

z

1
−2
α

f β (z)

Now, using a well-known result [4],


|h (z)| ≤

2Re(z)
(|z| = r),
1 − r2

(11)

we have from (10
Re

(



z f (z)
−λ
f (z)

)

≥ Re h(z) {(p − λ)−

279

.

(10)

M. K. Aouf - Differential Operators For p-Valent Functions


z

R 1 −2 β

z α f (z)d z 



2(p − λ) 0

.


1 − r2 z α1 −2 f β (z) 





(12)

Also, from (7) and (8), we have
1

1

z α −1 f β (z)
Rz

=

1



α z(z α −1 F β (z))
1

α (z α −1 F β (z))

z α −2 f β (z)d z

0



z F (z)
1
− 1) + β
α
F (z)
1
= ( − 1) + β [(p − λ)h(z) + λ],
α
= (

since F (z) ∈ Sp∗ (λ). Thus we have






z α1 −1 f β (z)


Rz

1


z α −2 f β (z)d z
0


≥ Re



(

1
− 1) + β[(p − λ)h(z) + λ]
α



1
1−r
− 1) + βλ + β(p − λ)
α
1+r
( α1 − 1 + βλ)(1 + r) + (βp − βλ)(1 − r)
.
1+r

≥ (
=

(13)

Hence, from (12) and (13), we have
Re

(



z f (z)
−λ
f (z)

)

≥ Re h(z) {(p − λ)−


2(p − λ)
(1 + r)(1 − r)



r(1 + r)
1
( α − 1 + βλ)(1 + r) + (βp − βλ)(1 − r)

)

= (p − λ) Re h(z).

.

(

(βp +

− 1) − 2(βp − βλ + 1)r − ( α1 − βp + 2βλ − 1)r2
(1 − r)(βp + α1 − 1) + ( α1 − βp + 2βλ − 1)r

1
α

)

.

(14)

The right-hand side of (50) is positive for r < r0 , 0 < α ≤ 1, β > 0 and 0 ≤ λ < p,
where r0 is given by the relation (6).
280

M. K. Aouf - Differential Operators For p-Valent Functions

The function f0 (z) defined by:
f0β (z) =
where

i
h
1

(1 − α) F0β (z) + α z(F0β (z)) ,
αβp − α + 1

(15)

zp
∈ Sp∗ (λ)
(1 − z)2(p−λ)

(16)

F0 (z) =

shows that the result is sharp.
Putting β = 1 in Theorem 1, we obtain
Corollary 1. Let F (z) ∈ Sp∗ (λ)(0 ≤ λ < p), and 0 < α ≤ 1. Let the function f (z)
be defined by the differential operator
Dα,1,p (F ) = f (z) =

h
i
1

(1 − α)F (z) + αzF (z) .
αp − α + 1

(17)

Then f (z) ∈ Sp∗ (λ) for |z| < r0∗ , where
r0∗ =

α(p − λ + 1) +

p

α2 (p

αp − α + 1
.
− λ + 1)2 + (αp − α + 1)(1 − αp + 2αλ − α)

(18)

The result is sharp.
Putting β = 1 and λ = 0 in Theorem 1, we have
Corollary 2. Let F (z) ∈ Sp∗ and 0 < α ≤ 1. Let the function f (z) be defined by
the differential operator (53). Then f (z) ∈ Sp∗ for |z| < r0∗∗ , where
r0∗∗ =

α(p + 1) +

p

α2 (p

αp − α + 1
.
+ 1)2 + (αp − α + 1)(1 − α p − α)

(19)

The result is sharp.
Remark 1. (1) Putting p = 1 in Theorem 1, we obtain the result obtained by Noor
[6];
(2) Putting p = 1 in Corollary 2, we obtain the result obtained By Noor et al.
[7];
(3) Putting p = 1 and α = 12 in Corollary 2, we obtain the result obtained by
Livingston [5];
(4) Theorem 1 generalizes a result due to Padmanabhan [9] when we take p =
β = 1 and α = 12 .
Theorem 2. Let F (z) ∈ Kp (γ, λ)(0 ≤ γ, λ < p) and let α > 0. Then the function
f (z), defined as


Dα,1,p (F ) = f (z) = (1 − α)F (z) + α zF (z)
281

(20)

M. K. Aouf - Differential Operators For p-Valent Functions

belongs to the same class for |z| < R0 , R0 = min(r1 , r2 ), where r1 and r2 are the
respective least positive roots of the equations
(p − 1 +

1
1
) − 2(p + 1 − λ)r − ( + 2λ − (p + 1))r2 = 0 ,
α
α

(21)

(p − 1 +

1
1
) − 2(p + 1 − γ)r − ( + 2γ − (p + 1))r2 = 0 .
α
α

(22)

and

The result is sharp.
Proof. Since F (z) ∈ Kp (γ, λ), then there exists a function G(z) ∈ Sp∗ (λ) such
that Re





z F (z)
G(z)



> γ, z ∈ U . Now let


Dα,1,p (G) = g(z) = (1 − α)G(z) + αzG (z).

(23)

Then, from Theorem 1, it follows that g(z) ∈ Sp∗ (λ) for |z| < r1 , where r1 is the
least positive root of (57).
 ′ 
f (z)

Using the same technique of Theorem 1, we can easily show that Re z g(z)

for |z| < R0 , where R0 = min(r1 , r2 ) and r2 is given by (58). The sharpness of the
result can be seen as follows:
Let
zp
zp
F1 (z) =
and
G
(z)
=
.
1
(1 − z)2(p−γ)
(1 − z)2(p−λ)
Then



z F (z)
Re 1
> γ , G1 ∈ Sp∗ (λ) ⇒ F1 ∈ Kp (γ, λ).
G1 (z)




Let f1 (z) = (1 − α)F1 (z) + α z F1 (z) and g1 (z) = (1 − α) G1 (z) + α z G1 (z).

z f1 (z)
g1 (z)

> γ for |z| < R0 , where R0 is as given in Theorem 2 and can not be
Then Re
improved.
Remark 2. (1) Putting p = 1 in Theorem 2, we obtain the result obtained by Noor
[6];
(2) Putting p = 1 and γ = λ = 0 in Theorem 2, we obtain the result obtained By
Noor et al. [7];
(3) Putting p = 1, γ = λ = 0 and α = 12 in Theorem 2, we obtain the result
obtained by Livingston [5];
(4) Putting p = 1 and α = 21 in Theorem 2, we obtain the result obtained by
Padmanabhan[9].
Theorem 3. Let 0 < α ≤ β ≤ 1 and F (z) ∈ Sp∗ (λ)(0 ≤ λ < p). Then f (z) defined
as
282

M. K. Aouf - Differential Operators For p-Valent Functions




(F ) = f α (z) = z α (z 1−β F β (z)) .
Dα,β,p

(24)

belongs to Sp∗ (λ1 ) for |z| < R1 , where R1 is given by
R1 =

(βp − βλ + 1) +

and

p

β 2 (p



1
,
+ β(1 − p)[β(1 + p − 2λ) − 2]

λ)2

λ1 = 1 −

(25)

β
(1 − λ).
α

The result is sharp.
Proof. From (2.20), we can write
β

F (z) = z

β−1

Zz

(

0

and so

f (z) α
) dz ,
z

α
z ( f (z)
zF (z)
z )
= (β − 1) + Rz
.
F (z)
f (z) α
( z ) dz


β

0

(26)



(z)
Since F (z) ∈ Sp∗ (λ), z FF(z)
= (p − λ)h(z) + λ, 0 ≤ λ < p, Re h(z) > 0, z ∈ U . Thus,
from (2.22), we obtain

β(p − λ)h(z)

Zz
0

f (z) α
(
) dz + [βλ + (1 − β)]
z

Zz
0

(

f (z) α
f (z) α
) dz = z(
) .
z
z

Differentiating again with respect to z, we obtain
f (z) α

) + β(p − λ)h (z)
β(p − λ)h(z)(
z

Zz
0

(

f (z) α
f (z) α
) dz + [βλ + (1 − β)](
)
z
z



= α z 1−α f α−1 (z) f (z) + (1 − α)(
or



β
z f (z)
− [1 − (1 − λ)]
f (z)
α
283

f (z) α
)
z

M. K. Aouf - Differential Operators For p-Valent Functions

=






β

(p − λ) h(z) +

α

h (z)

Rz

α
( f (z)
z )

0
α
( f (z)
z )



dz 


.


Now, using the well-known result (11), we have from (2.23),


z f (z)
β
Re
− [1 − (1 − λ)] ≥
f (z)
α

z

R f (z) α

(
)
dz



β
2 0 z


(p − λ)Re h(z) 1 −
 .


α
1 − r2 ( f (z) )α 
z




Now

Rz
0

α
z ( f (z)
z )
α
( f (z)
z ) dz



=

z (z 1−β F β (z)
z 1−β F β (z)


= β

zF (z)
+ (1 − β)
F (z)

= β[(p − λ)h(z) + λ] + (1 − β), Re h(z) > 0,
and from this, it follows that






z( f (z) )α


z

Rz

f (z) α
( z ) dz

0

≥ β(p − λ)Re h(z) + βλ + (1 − β)

=
Hence

1−r
+ βλ + (1 − β)
1+r
β(p − λ)(1 − r) + (βλ + (1 − β))(1 + r)
.
(1 + r)

≥ β(p − λ)



Re

β
β
z f (z)
− [1 − (1 − λ)] ≥ (p − λ) Re h(z).
f (z)
α
α
284

(27)

M. K. Aouf - Differential Operators For p-Valent Functions

.

=



r(1 + r)
2
1−
2
1 − r β(p − λ)(1 − r) + (βλ + (1 − β))(1 + r)

β
(p − λ)Reh(z)
α





(1 − r)[β(p − λ)(1 − r) + (βλ + (1 − β))(1 + r)] − 2r
. (28)
(1 − r)[β(p − λ)(1 − r) + (βλ + (1 − β))(1 + r)]


The right-hand side of the inequality (2.24) is positive for |z| < R1 , where R1 is the
least positive root of the equation
(1 − βp − β + 2βλ)r2 + 2(βp − βλ + 1)r − (βp − β + 1) = 0,

(29)

and thus we obtain the required result. The function
zp
∈ Sp∗ (λ)
(1 − z)2(p−λ)

F1 (z) =

(30)

shows that the result is best possible.
Putting λ = 12 in Theorem 3, we obtain
Corollary 3. Let 0 < α ≤ β ≤ 1 and F (z) ∈ Sp∗ ( 21 ). Then f (z) defined by (2.20)
β
) for |z| < R2 , where R2 is given by
belongs to Sp∗ (1 − 2α
R2 =

(2βp − β + 2) +

p

β 2 (2p

2
.
− 1)2 + 8 + β(1 − p)(p − 2)

(31)

The result is sharp.
Remark 3. (1) Putting p = 1 in Theorem 3, we obtain the result obtained by Noor
[6];
(2) Putting α = β and F (z) ∈ Sp∗ (λ). Then f (z) defined by (2.20) also belongs
to Sp∗ (λ) for |z| < R1 ;
(3) Putting p = 1 in Corollary 3, we obtain the result obtained by Noor [6].
Using the same technique of Theorem 3 we can prove the following theorem.
Theorem 4. Let F (z) ∈ Bp (β, λ), 0 < β ≤ 1 and 0 ≤ λ < p. Let f (z) be defined
as

f β (z) = z β (z 1−β F β (z)) .
Then f (z) ∈ Bp (β, λ) for |z| < R3 , where R3 is given by
R3 =

(βp − β + 1) +

The result is sharp.

p

β 2 (p



λ)2

1
.
+ 2 + β(1 − p)[β(1 + p − 2λ) − 2]

285

(32)

M. K. Aouf - Differential Operators For p-Valent Functions

References
[1] M. K. Aouf, On a class of p-valent close-to-convex functions, Internat. J.
Math. Math. Sci., 11, no.2, (1988), 259-266.
[2] M. K. Aouf, H. M. Hossen and H. M. Srivastava, Some families of multivalent
functions, Comput. Math. Appl., 39, (2000), 39-48.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., (1952),
169-185.
[4] R. J. Libera, Some radius of convexity problems, Duke Math. J., 31, (1964),
143-158.
[5] A. E. Livingston, On the radius of univalent of certain analytic functions,
Proc. Amer. Math. Soc., 17, (1966), 352-357.
[6] K. I. Noor, Differential operators for univalent functions, Math. Japon., 32,
no.3, (1987), 427-436.
[7] K. I. Noor, F. M. Aloboudi and N. Aldihan, On the radius of univalence of
convex combinations of analytic functions, Internat J. Math. Math. Sci., 6, no.2,
(1983), 335-340.
[8] S. Owa, Some properties of certain multivalent functions, Appl. Math. Letters, 4, no.5, (1991), 79-83.
[9] K. S. Padmanabhan, On the radius of univalence of certain class of analytic
functions, J. London Math. Soc., 1, (1969), 225-231.
[10] D. K. Thomas, Bazilevic functions, Trans. Amer. Math. Soc., 132, (1968),
353-361.
Mohamed K. Aouf
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt.
email: mkaouf127@yahoo.com.

286

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52