Paper-6-Acta24.2010. 127KB Jun 04 2011 12:03:14 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 51-61

SOME PROPERTIES OF NEW INTEGRAL OPERATOR

R. M. El-Ashwah and M. K. Aouf
Abstract. Certain integral operator Jpm (λ, ℓ)(λ ≥ 0; ℓ ≥ 0; p ∈ N ; m ∈ N0 =
N ∪ {0}), where N = {1, 2, ...} is introduced for functions of the form f (z) = z p +

X
ak z k which are analytic and p-valent in the open unit disc U = {z : |z| < 1}.

k=p+1

The opject of the present paper is to give an applications of the above operator to
the differential inequalities.
2000 Mathematics Subject Classification: 30C45.
1.Introduction

Let A(p) denote the class of functions of the form:
p

f (z) = z +


X

ak z k

(p ∈ N = {1, 2, ....})

(1.1)

k=p+1

which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. In [3] Catas
extended the multiplier transformation and defined the operator Ipm (λ, ℓ)f (z) on
A(p) by the following infinite series


∞ 
X
p + ℓ + λ(k − p) m
m
p
Ip (λ, ℓ)f (z) = z +
an z n
p+ℓ
k=p+1

(λ ≥ 0; ℓ ≥ 0; p ∈ N, m ∈ N0 ; z ∈ U ).

(1.2)

We note that:


Ip0 (1, 0)f (z)

= f (z)


and

Ip1 (1, 0)f (z)

zf (z)
=
.
p

By specializing the parameters m, λ, ℓ and p, we obtain the following operators
studied by various authors :
51

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

(i) Ipm (1, ℓ) = Ip (m, ℓ)f (z) (see Kumar et al. [9] and Srivastava et al. [16]);
(ii) Ipm (1, 0)f (z) = Dpm f (z) (see [2], [8] and [11]);
(iii) I1m (1, ℓ)f (z) = Iℓm f (z) (see Cho and Srivastava [4] and Cho and Kim [5]);
(iv) I1m (1, 0) = Dm f (z) (m ∈ N0 ) (see Salagean [14]);

(v) I1m (λ, 0) = Dλm (see Al-Aboudi [1]);
(vi) I1m (1, 1) = I m f (z) (see Uralegaddi and Somanatha [17]);
m f (z), where D m f (z) is defined by
(vii) Ipm (λ, 0) = Dλ,p
λ,p
m
Dλ,p
f (z)


∞ 
X
p + λ(k − p) m
=z +
ak z k .
p
p

k=p+1


Furthermore we define the integral operator Jpm (λ, ℓ)f (z) as follows:
Jp0 (λ, ℓ)f (z) = f (z),
Jp1 (λ, ℓ)f (z)

Jp2 (λ, ℓ)f (z) =

=





p+ℓ
λ

p+ℓ
λ






z

z p−(

p−( p+ℓ
)
λ

Zz

t(

p+ℓ
)−p−1
λ

f (t)dt


(f (z) ∈ A(p); z ∈ U ),

0

p+ℓ
)
λ

Zz

t(

p+ℓ
)−p−1
λ

Jp1 (λ, ℓ)f (t)dt

(f (z) ∈ A(p); z ∈ U ),


0

and, in general,
Jpm (λ, ℓ)f (z)

=

Jp1 (λ, ℓ)
x

=





p+ℓ
λ




z

p−(

p + ℓ Zz p + ℓ
)
)−p−1
(
λ
Jpm−1 (λ, ℓ)f (t)dt
t λ
0


 p 
 p 
zp
z
z

1
1
∗ Jp (λ, ℓ)
∗ ....Jp (λ, ℓ)
∗ f (z)
1−z
1−z
1−z
m − times
y
(f (z) ∈ A(p); m ∈ N ; z ∈ U ).

(1.3)

We note that if f (z) ∈ A(p), then from (1.1) and (1.3), we have
m
∞ 
X
p+ℓ
m

p
Jp (λ, ℓ)f (z) = z +
ak z k (m ∈ N0 = N ∪ {0}). (1.4)
p + ℓ + λ(k − p)
k=p+1

From (1.4), it is easy to verify that


λz(Jpm+1 (λ, ℓ)f (z)) = (ℓ + p)Jpm (λ, ℓ)f (z) − [ℓ + p(1 − λ)] Jpm+1 (λ, ℓ)f (z) (λ > 0).
(1.5)
52

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

We note that:
(i)J1m (λ, 0)f (z) = Iλ−m f (z) (see Patel [12])

=

(

f (z) ∈ A(1) : Iλ−m f (z) = z +


X

[1 + λ(k − 1)]−m ak z k , m ∈ N0

k=2

)

;

(ii) J1α (1, 1)f (z) = I α f (z) (see Jung et al. [7]);
)
(

∞ 
X
2
ak z k ; α > 0; z ∈ U ;
= f (z) ∈ A(1) : I α f (z) = z +
k+1
k=2

(iii) Jpα (1, 1)f (z) = Ipα f (z) (see Shams et al. [15]);



∞ 


X
p+1
= f (z) ∈ A(p) : Ipα f (z) = z p +
ak z k ; α > 0; z ∈ U ;


k+1
k=p+1

(iv) Jpm (1, 1)f (z) = Dm f (z) (see Patel and Sahoo [13]);



m
∞ 


X
p+1
ak z k ; m is any integer; z ∈ U .
= f (z) ∈ A(p) : Dm f (z) = z p +


k+1
k=p+1

(v) J1m (1, 1)f (z) = I m f (z) (see Flett [6]);

=

m
∞ 
X
2
ak z k ; m ∈ N0 ; z ∈ U
f (z) ∈ A(1) : I f (z) = z +
k+1

(

m

k=2

)

;

(iv) J1m (1, 0)f (z) = I m f (z) (see Salagean [14])
(
)

X
m
−m
k
= f (z) ∈ A(1) : I f (z) = z +
k ak z ; m ∈ N0 ; z ∈ U .
k=2

Also we note that:
(i)Jpm (1, 0)f (z) = Jpm f (z)


∞  


X
m
p
k
m
p
ak z ; m ∈ N0 ; z ∈ U ;
= f (z) ∈ A(p) : Jp f (z) = z +


k
k=p+1

53

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

(ii) Jpm (1, ℓ)f (z) = Jpm (ℓ)f (z)


m
∞ 


X
p+ℓ
ak z k ; m ∈ N0 ; ℓ ≥ 0; z ∈ U ;
= f (z) ∈ A(p) : Jpm (ℓ)f (z) = z p +


k+ℓ
k=p+1

m f (z)
(iii) Jpm (λ, 0)f (z) = Jλ,p


m
∞ 


X
p
m
f (z) = z p +
= f (z) ∈ A(p) : Jλ,p
ak z k ; m ∈ N0 ; λ ≥ 0; z ∈ U .


p + λ(k − p)
k=p+1

By using the operator Jpm (λ, ℓ), we define the following classes of functions.

Definition 1. Let Φ be the set of complex-valued functions ϕ(r, s, t);
ϕ(r, s, t) : C 3 → C (C is complex plane)
such that
(i) ϕ(r, s, t) is continuous in a domain D ⊂ C 3 ;
(ii) (0,
0, 0) ∈ D and |ϕ(0, 0, 0)| < 1;

hn
h

h
i
i

p(1−λ)+ℓ
1 
iθ ,  1 
1
+
2
ζ + p(1−λ)+ℓ
e
ζ+
(iii) ϕeiθ ,  p+ℓ
2
λ
λ
p+ℓ

λ
λ
 !
i2 
h

p(1−λ)+ℓ
eiθ + M
> 1,
λ



h

h
i
i
p(1−λ)+ℓ
p(1−λ)+ℓ
1
1


2 

whenever e ,  p+ℓ  ζ +
1+
2
e
,
ζ+
λ
λ
p+ℓ

λ
λ
!
i2 
h


p(1−λ)+ℓ
eiθ + M
∈ D, λ > 0, ℓ ≥ 0, with Re e−iθ M ≥ ζ(ζ − 1), for
λ

all θ ∈ R, and for all ζ ≥ p ≥ 1.

Definition 2. Let H be a set of complex-valued functions h(r, s, t);
h(r, s, t) : C 3 → C
(i) h(r, s, t) is continuous in a domain D ⊂ C 3 ;
(ii) (1,
1, 1) ∈ D and |h(1,
 1, 1)| < M (M" > 1);

p+ℓ



ζ + λ M eiθ

1 



(iii) h M e ,
ζ + p+ℓ
M eiθ +
,  p+ℓ
λ
p+ℓ

λ
λ
54

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

ζ − ζ2 +
ζ+
whenever




ζ+

M e ,







p+ℓ
λ



p+ℓ
λ



p+ℓ
λ

ζM eiθ + L



M eiθ



p+ℓ
λ




 ≥ M,



"


M eiθ
1

 ζ + p+ℓ
M eiθ +
,
λ

ζ − ζ2 +

+
ζ+

p+ℓ
λ



p+ℓ
λ





p+ℓ
λ



ζM eiθ + L



 ∈ D,

M eiθ

where Re{L} ≥ ζ(ζ − 1) for all θ ∈ R and for all ζ ≥

M −1
.
M +1

2.Main Results
We recall the following lemmas due to Miller and Mocenu [10].
Lemma 1 [10]. Let w(z) = bp z p + bp+1 z p+1 + ....(p ∈ N ) be regular in the unit disc
U with w(0) 6= 0 (z ∈ U ).
If z0 = r0 eiθ0 (0 < r0 < 1) and |w(z0 )| = max |w(z)| , then
|z|≤z0



and

z0 w (z0 ) = ζw(z0 )

(2.1)

(

(2.2)

′′

z0 w (z0 )
Re 1 +
w′ (z0 )

)

≥ζ

and
where ζ is real and ζ ≥ p ≥ 1.
Lemma 2 [10]. Let w(z) = a + wν z ν + .... be regular in U with w(z) 6= a and
ν ≥ 1 If z0 = r0 eiθ0 (0 < r0 < 1) and |w(z0 )| = max |w(z)| , then
|z|≤z0



z0 w (z0 ) = ζw(z0 )
and

(

′′

z0 w (z0 )
Re 1 +
w′ (z0 )

55

)

≥ ζ,

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

where ζ is a real number and
ζ≥ν

|w(z0 )| − |a|
|w(z0 ) − a|2
2
2 ≥ ν |w(z )| + |a| .
|w(z0 )| − |a|
0

(2.3)

Theorem 1. Let ϕ(r, s, t) ∈ Φ and let f (z) belonging to the class A(p) satisfy
(i) (Jpm (λ, ℓ)f (z) , Jpm−1 (λ, ℓ)f (z) , Jpm−2 (λ, ℓ)f (z)) ∈ D ⊂ C 3
and


(ii) ϕ(Jpm (λ, ℓ)f (z) , Ipm−1 (λ, ℓ)f (z) , Ipm−2 (λ, ℓ)f (z)) < 1

for m > 2, p ∈ N, λ > 0, ℓ ≥ 0 and z ∈ U. Then we have

m
Jp (λ, ℓ)f (z) < 1 (z ∈ U ).

(2.4)

Proof. We define the analytic function w(z) by
Jpm (λ, ℓ)f (z) = w(z)

(m > 2; p ∈ N ; λ > 0; ℓ ≥ 0)

(2.5)

for f (z) belonging to the class A(p). Then, it folllows that w(z) ∈ A(p) and
w(z) 6= 0 (z ∈ U ). With the aid of the idenlitty (1.5), we have



1
p(1 − λ) + ℓ

m−1

Jp (λ, ℓ)f (z) = 
w(z) + zw (z)
(2.6)
p+ℓ
λ
λ

and

Jpm−2 (λ, ℓ)f (z)

=

1


p+ℓ
λ



2

(

p(1 − λ) + ℓ
λ



p(1 − λ) + ℓ
1+2
λ

2



w(z) +


zw (z) + z w (z) .


2

′′

(2.7)

Suppose that z0 = r0 eiθ0 (0 < r0 < 1; θ0 ∈ R) and
w(z0 ) = max |w(z)| = 1.
|z|≤|z0 |

(2.8)

Then, letting w(z0 ) = eiθ0 and using (2.1) of Lemma 1, we obtain
Jpm (λ, ℓ)f (z0 ) = w(z0 ) = eiθo ,
56

(2.9)

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator




p(1 − λ) + ℓ

= p+ℓ
w(z0 ) + z0 w (z0 )
λ
( λ )



p(1 − λ) + ℓ
1
ζ+
eiθ0
= p+ℓ
λ
)
(
1

Jpm−1 (λ, ℓ)f (z0 )

λ

and
Jpm−2 (λ, ℓ)f (z0 ) =

=

1
2
( p+ℓ
λ )

"(

1
2
( p+ℓ
λ )





1+2

p(1 − λ) + ℓ
1+2
λ



h

p(1−λ)+ℓ
λ

i

ζ+

h

p(1−λ)+ℓ
λ

i
′′
z02 w (z0 )


p(1 − λ) + ℓ
ζ+
λ

2 )

iθ0

e

i2 

eiθ0 +

#

+M ,

(2.11)

′′

where M = z02 w (z0 ) and ζ ≥ p ≥ 1.
Further, an application of (2.2) in Lemma 1, gives
)
)
(
(
′′
′′
z02 w (z0 )
z0 w (z0 )
≥ ζ − 1,
= Re
Re
ζeiθ0
w′ (z0 )
or

n
o
Re e−iθ0 M ≥ ζ(ζ − 1)

(θ0 ∈ R; ζ ≥ 1).

(2.12)

(2.13)

Since ϕ(r, s, t) ∈ Φ, we also have



ϕ(Jpm (λ, ℓ)f (z0 ), J m−1 (λ, ℓ)f (z0 ), J m−2 (λ, ℓ)f (z0 ))









1
p(1 − λ) + ℓ
p(1 − λ) + ℓ
1

iθ0
iθ0
e , p+ℓ
ζ
1+2
ζ+
= ϕ e , p+ℓ

λ
λ
( λ )
( λ )2
#!

 )

p(1 − λ) + ℓ 2 iθ0

+
e +M >1
(2.14)

λ

which contradicts the condition (ii) of Theorem 1 Therefore, we conclude that


|w(z)| = Jpm (λ, ℓ)f (z) < 1 (z ∈ U ; m > 2).

Corollary 1. Let ϕ1 (r, s, t) = s and let f (z) ∈ A(p) satisfy the conditions in
Theorem 1 for m > 2; p ∈ N ; λ > 0; ℓ ≥ 0 and z ∈ U. Then

m+i
(Jp (λ, ℓ)f (z) < 1 (i = 0, 1, ...; m > 2; p ∈ N ; λ > 0; ℓ ≥ 0)
57

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

Proof. Note that ϕ1 (r, s, t) = s in Φ, with the aid of Theorem 1, we have



m−1
Jp (λ, ℓ)f (z) < 1 ⇒ Jpm (λ, ℓ)f (z) < 1 (m > 2; p ∈ N ; λ > 0; ℓ ≥ 0)


⇒ Jpm+i (λ, ℓ)f (z) < 1

(i = 0, 1, 2, ...; m > 2; p ∈ N ; λ > 0; ℓ ≥ 0; z ∈ U ).

Theorem 2. Let h(r, s, t) ∈ H, and let f (z) belonging to A(p) satisfying
!
Jpm−1 (λ, ℓ)f (z) Jpm−2 (λ, ℓ)f (z) Jpm−3 (λ, ℓ)f (z)
,
∈ D ⊂ C3
,
(i)
Jpm (λ, ℓ)f (z) Jpm−1 (λ, ℓ)f (z) Jpm−2 (λ, ℓ)f (z)
and




(ii) h


Jpm−1 (λ, ℓ)f (z) Jpm−2 (λ, ℓ)f (z) Jpm−3 (λ, ℓ)f (z)
,
,
Jpm (λ, ℓ)f (z) Jpm−1 (λ, ℓ)f (z) Jpm−2 (λ, ℓ)f (z)

!


0; ℓ ≥ 0; m > 3; p ∈ N ; M > 1) and for all z ∈ U. Then
we have


J m−1 (λ, ℓ)f (z)

p
(2.16)
< M (z ∈ U )
m
Jp (λ, ℓ)f (z)
Proof. We define the function w(z) by


J m−1 (λ, ℓ)f (z)

p
= w(z) (λ > 0, ℓ ≥ 0; m > 3; p ∈ N )
m
Jp (λ, ℓ)f (z)

(2.17)

for f (z) belonging to the class A(p). Then, it follows that w(z) is either analytic
or meromorphic in U , w(0) = 1, and w(z) 6= 1. With the aid of the identity (1.5),
we have


#
"

J m−2 (λ, ℓ)f (z)


zw
(z)
1
p

p+ℓ

w(z) +
(2.18)
m−1
=
λ
p+ℓ
Jp (λ, ℓ)f (z)
w(z)
λ

and



#
"

J m−3 (λ, ℓ)f (z)


zw (z)
 1 
p
p+ℓ
+
w(z) +
=
m−2
λ
p+ℓ
Jp (λ, ℓ)f (z)
w(z)
λ



p+ℓ
λ




′′



z 2 w (z)
zw (z) 2
(z)
+

(
)
zw (z) + zw
w(z)
w(z)
w(z)



.

zw (z)
p+ℓ
w(z)
+
λ
w(z)
58

(2.19)

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

Suppose that z0 = r0 eiθ0 (0 < r0 < 1; θ0 ∈ R) and |w(z0 )| = max |w(z)| = M.
|z|≤|z0 |

Letting w(z0 ) = M eiθ0 and applying Lemma 2 with a = ν = 1, we see that
Jpm−2 (λ, ℓ)f (z)
Jpm−1 (λ, ℓ)f (z)
and
Jpm−3 (λ, ℓ)f (z0 )
Jpm−2 (λ, ℓ)f (z0 )
′′

z 2 w (z )

=

1
p+ℓ
λ

h


i
iθ0
 ζ + p+ℓ
M
e
λ

(2.20)





p+ℓ
2
iθ0 + L 



ζM
e
ζ

ζ
+
λ
1

 ζ + p+ℓ

=
,
M eiθ0 +
λ
p+ℓ
p+ℓ 

ζ+
M eiθ0
λ

λ

M −1
where L = 0w(z0 )0 and ζ ≥ M
+1 .
Further, an application of (ii) in Lemma 2 gives

Re {L} ≥ ζ(ζ − 1).
Since h(r, s, t) ∈ H, we have

!

Jpm−1 (λ, ℓ)f (z0 ) Jpm−2 (λ, ℓ)f (z0 ) Jpm−3 (λ, ℓ)f (z0 )

,
,
h


Jpm (λ, ℓ)f (z0 ) Jpm−1 (λ, ℓ)f (z0 ) Jpm−2 (λ, ℓ)f (z0 )





 

M eiθ0
ζ + p+ℓ

λ
1
iθ0






ζ+ p+ℓ
,
= h M e ,
M eiθ0 +
λ
p+ℓ
p+ℓ

λ
λ



iθ0 + L 
ζ − ζ 2 + p+ℓ
ζM
e

λ
 ≥ M,


p+ℓ

ζ + λ M eiθ0

which contradicts condition (ii) of Theorem 2. Therefore, we conclude that


J m−1 (λ, ℓ)f (z)
p

|w(z)| = m
(2.23)
0, ℓ ≥ 0, m > 3, p ∈ N and z ∈ U. This completes the proof of Theorem
2.
Remarks. (i)Putting λ = 1 in the above results, we obtain the correspording
results for the operatr Jpm (ℓ)f (z);
(ii) Putting ℓ = 0 in the above results, we obtain the correspording results for
m f (z);
the operatr Jλ,p
59

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

(iii) Putting λ = ℓ = 1 in the above results, we obtain the correspording results
for the operatr Dm f (z).
Ref erences
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean
operator, Internat.J. Math. Math. Sci., 27(2004), 1429-1436.
[2] M. K. Aouf and A.O. Mostafa, On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl., (2008), no. 55, 851-861.
[3] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proc. Book of the International Symposium on Geometric Function
Theory and Applications, Istanbul, Turkey, (August 2007), 241-250.
[4] N. E. Cho and H. M. Srivastava, Argument estimates of certain anaytic
functions defined by a class of multipier transformations, Math. Comput. Modelling,
37 (1-2)(2003), 39-49.
[5] N. E. Cho and T.H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean Math. Soc., 40(2003), no. 3, 399-410.
[6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some
related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
[7] T. B. Jung, Y.C.Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math.
Anal. Appl. 176(1993), 138–147.
[8] M. Kamali and H. Orhan, On a subclass of certian starlike functions with
negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.
[9] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations,
Kyungpook Math. J. (2006), no. 46, 97-109.
[10] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the
complex plane, J. Math. Anal. Appl. 65 (1978), 289–305.
[11] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155 (2004), 521-530.
[12] J. Patel, Inclusion relations and convolution properties of certain subclasses
of analytic functions defined by a generalized Salagean operator, Bull. Belg. Math.
Soc. Simon Stevin 15(2008), 33-47.
[13] J. Patel and P. Sahoo, Certain subclasses of multivalent analytic functions,
Indian J. Pure Appl. Math. 34(2003), no.3, 487-500.
[14] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (
Springer-Verlag ) 1013(1983), 362-372.
[15] Saeid Shams, S. R. Kulkarni and J. M. Jahangiri, Subordination properties
of p-valent functions defined by integral operators, Internat. J. Math. Math. Sci.
(2006)Art. ID 94572, 1-3.
60

R. M. El-Ashwah, M. K. Aouf - Some Properties of New Integral Operator

[16] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian,
Inclusion and neighborhood properties of certian subclsaaes of multivalent functions
of complex order, J. Ineq. Pure Appl. Math. Vol.7 (2006), no. 6, pp. 1-8.
[17] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions,
In Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S.
Owa), World Scientfic Publishing Company, Singapore, 1992, 371-374.
R. M. El-Ashwah
Department of Mathematics
Faculty of Science (Damietta Branch)
University of Mansoura University
New Damietta 34517, Egypt
email:r elashwah@yahoo.com
M. K. Aouf
Department of Mathematics
Faculty of Science
University of Mansoura University
Mansoura 35516, Egypt
email:mkaouf127@yuhoo.com

61

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52