Paper-16-Acta24.2010. 99KB Jun 04 2011 12:03:11 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 181-187

A NEW CLASS OF MEROMORPHIC FUNCTIONS

Saqib Hussain
Abstract. In this paper, making use of a linear operator we introduce and
study a new class of meromorphic functions. We derive some inclusion relations and
a radius problem. This class contain many known classes of meromorphic functions
as special cases.
2000 Mathematics Subject Classification: 30C45, 30C50.
1. Introduction
Let M denotes the class of functions of the form


1 X
f (z) = +
an z n ,

z

(1.1)

n=0

which are analytic in the punctured open unit disc D = {z : 0 < |z| < 1}. Further
let Pk (α) be the class of functions p(z), z ∈ E, analytic in E = D ∪ {0} satisfying
p(0) = 1 and

Z2π
Re p(z) − α


(1.2)
1 − α dθ ≤ kπ,
0

reiθ , k


where z =
≥ 2, 0 ≤ α < 1. This class was introduced by Padmanbhan
and Paravatham [5]. For α = 0 we obtain the class Pk defined by Pinchuk [6] and
P2 (α) = P (α) is the class with positive real part greater than α. Also p ∈ Pk (α), if
and only if




k 1
k 1
p(z) =
+

p1 (z) −
p2 (z),
(1.3)
4 2
4 2
where p1 , p2 ∈ P (α), z ∈ E. The class M is closed under then the convolution or

Hadamard product denoted and defined by


(f ∗ g)(z) =

1 X
an bn z n ,
+
z
n=0

181

(1.4)

S. Hussain - A new class of meromorphic functions

where
f (z) =






n=0

n=0

1 X
1 X
+
an z n , g(z) = +
bn z n .
z
z

The incomplete Beta function is defined by


1 X (a)n+1 n

z ,
φ(a, c; z) = +
z
(c)n+1

a, c ∈ R, c 6= 0, −1, −2, ..., z ∈ D

(1.5)

n=0

where (a)n is the Pochhammer symbol. Using φ(a, c; z) Liu and Srivastava [3] defined
an operator £(a, c) : M → M, as
£(a, c)f (z) = φ(a, c; z) ∗ f (z).

(1.6)

This operator is closely related to the Carlson-Shaffer operator studied in [1]. Analogous to £(a, c), in [2] Cho and Noor defined Iµ (a, c) : M → M as
Iµ (a, c)f (z) = (φ(a, c; z))−1 ∗ f (z), (µ > 0, a > 0, c 6= −1, −2, −3, ..., z ∈ D).
(1.7)

We note that
I2 (2, 1)f (z) = f (z),

and I2 (1, 1)f (z) = zf ´(z) + 2f (z)

Using (1.7), it can be easily verified that
z(Iµ (a + 1, c)f (z))´= aIµ (a, c)f (z) − (a + 1)Iµ (a + 1, c)f (z)

(1.8)

z(Iµ (a, c)f (z)´= µIµ+1 (a, c)f (z) − (µ + 1)Iµ (a, c)f (z).

(1.9)

and
Furthermore for f ∈ M, Re b > 0 the Generalized Bernadi Operator is defined as
Jb f (z) =

b
z b+1


Zz

tb f (t) dt.

(1.10)

0

Using (1.10) it can easily be verified that
z(Iµ (a, c)Jb f (z))´ = bIµ (a, c)f (z) − (b + 1)Iµ (a, c)Jb f (z).

(1.11)

Now using the operator Iµ (a, c), we define the following class of meromorphic functions.

182

S. Hussain - A new class of meromorphic functions


Definition 1.1

Let f ∈ M, then f (z) ∈ Qµk (a, c, λ, α), if and only if
′′



z (Iµ (a, c)f (z))´+ λz 2 (Iµ (a, c)f (z))
∈ Pk (α),
(1 − λ)Iµ (a, c)f (z) + λz (Iµ (a, c)f (z))´

where k ≥ 2, 0 ≤ λ ≤ 1, 0 ≤ α < 1, µ > 0, a > 0, c 6= −1, −2, −3, ..., z ∈ D.
Special Cases:
(i)
For λ = 0 and λ = 1 this class was already discussed by Noor in [2].
´(z)
(ii)
For λ = 0, µ = 2, a = 2, c = 1, k = 2 − zff (z)
∈ P (α).
(iii)

For λ = 1, µ = 2, a = 2, c = 1, k = 2


[zf ´(z)]´
∈ P (α).
f ´(z)

2.Preliminary Results
Lemma 2.1 [4]. Let u = u1 + iu2 and v = v1 + iv2 and let ϕ(u, v) be a complex
valued function satisfying the conditions:
i) ϕ(u, v) is continuous in D ⊂ C 2 ,
ii) (1, 0) ∈ D and Re ϕ(1, 0) > 0,
iii) Re ϕ(iu2 , v1 ) 6 0 whenever (iu2 , v1 ) ∈ D and v1 6 − 12 (1 + u22 ).
If h(z) is a function analytic in D ∪ {0} such that (h(z), zh´(z)) ∈ D and
Re ϕ(h(z), zh´(z)) > 0 for z ∈ D ∪ {0}, then Re h(z) > 0 in D ∪ {0}.
3.Main Results
Theorem 3.1. For k ≥ 2, 0 ≤ λ ≤ 1, 0 ≤ α < 1, µ > 0, a > 0, c 6=
−1, −2, −3, ..., z ∈ D.
Qµ+1
(a, c, λ, α) ⊂ Qµk (a, c, λ, β) ⊂ Qµk (a + 1, c, λ, γ).

k
Proof. First we prove that
Qµ+1
(a, c, λ, α) ⊂ Qµk (a, c, λ, β).
k
Let f (z) ∈ Qµ+1
(a, c, λ, α) and set
k
′′



z (Iµ (a, c)f (z))´+ λz 2 (Iµ (a, c)f (z))
= H(z).
(1 − λ)Iµ (a, c)f (z) + λz (Iµ (a, c)f (z))´
183

(3.1)

S. Hussain - A new class of meromorphic functions


From (1.9) and (3.1), we have
µ[λz (Iµ+1 (a, c)f (z))´+ (1 − λ)Iµ+1 (a, c)f (z)]
= −H(z) + (µ + 1).
(1 − λ)Iµ (a, c)f (z) + λz (Iµ (a, c)f (z))´

(3.2)

After multiplying (3.2) by z and then by logarithmic differentiation , we obtain
′′

z (Iµ+1 (a, c)f (z))´+ λz 2 (Iµ+1 (a, c)f (z))
zH´(z)
= H(z) +
∈ Pk (α).

(1 − λ)Iµ+1 (a, c)f (z) + λz (Iµ+1 (a, c)f (z))´
−H(z) + (µ + 1)
Let

"
"
#
#


1
1 X k
1 X
µ
k
ϕµ (z) =
+
+
z +
kz ,
µ+1 z
µ+1 z
k=0

then

k=0

zH´(z)
H(z) ∗ zϕµ (z) = H(z) +
−H(z) + (µ + 1)






k 1
k 1
+

h1 (z) + zϕµ (z) −
h2 (z) + zϕµ (z)
=
4 2
4 2



k 1
zh1´(z)
=
+
h1 (z) +

4 2
−h1 (z) + (µ + 1)



zh2´(z)
k 1

h1 (z) +
.

4 2
−h2 (z) + (µ + 1)
As f (z) ∈ Qµ+1
(a, c, λ, α), so
k
hi (z) +

zhi´(z)
∈ P (α)
−hi (z) + (µ + 1)

i = 1, 2.

Let hi (z) = (1 − β)pi (z) + β, then


(1 − β)zpi´(z)
+ (β − α) ∈ P.
(1 − β)pi (z) +
−(1 − β)pi (z) + (µ − β + 1)
We want to show that pi ∈ P , for i = 1, 2. For this we formulate a functional ϕ(u, v)
by taking u = pi (z) and v = zpi´(z) as follows:
ϕ(u, v) = (1 − β)u +

(1 − β)v
+ (β − α).
−(1 − β)u + (µ − β + 1)

The first two conditions of Lemma 2.1 are clearly satisfied. For the third condition
we proceed as follows:
Re ϕ(iu2 , v1 ) = (β − α) +

(1 −

184

(1 − β)v1
.
+ (µ − β + 1)2

β)2 u22

S. Hussain - A new class of meromorphic functions
When v1 ≤ − 21 (1 + u22 ), then
Re ϕ(iu2 , v1 ) ≤ (β − α) −
=

(1 − β)(µ − β + 1)(1 + u22 )
2[(1 − β)2 u22 + (µ − β + 1)2 ]

A + Bu22
,
2C

where
A = (µ − β + 1) {2(β − α)(µ − β + 1) − (1 − β)} ,
B = (1 − β) {2(β − α)(1 − β) − (µ − β + 1)} ,
C = (1 − β)2 u22 + (µ − β + 1)2 .
We note that Re ϕ(iu2 , v1 ) ≤ 0 if and only if A ≤ 0, and B ≤ 0. From A ≤ 0, we
have
i
p
1h
β=
(3 + 2µ + 2α) − (3 + 2µ + 2α)2 − 8(2α + 2αµ + 1) ,
4
and B ≤ 0 gives us 0 ≤ β < 1. Hence by Lemma 2.1, pi ∈ P , for i = 1, 2 and
consequently, f (z) ∈ Qµk (a, c, λ, β). Similarly, we can prove the other inclusion.
Theorem 3.2. If f (z) ∈ Qµ+1
(a, c, λ, α) and Jb is given by (1.11) then Jb f (z) ∈
k
µ+1
Qk (a, c, λ, β).
Proof. Let f (z) ∈ Qµ+1
(a, c, λ, α) and set
k
′′

z (Iµ (a, c)Jb f (z))´+ λz 2 (Iµ (a, c)Jb f (z))

= H(z).
(1 − λ)Iµ (a, c)Jb f (z) + λz (Iµ (a, c)Jb f (z))´

(3.3)

Using (1.11), (3.3) and after some simplifications, we obtain
′′

z (Iµ (a, c)f (z))´+ λz 2 (Iµ (a, c)f (z))
zH´(z)
= H(z) +
.

(1 − λ)Iµ (a, c)f (z) + λz (Iµ (a, c)f (z))´
−H(z) + (b + 1)

(3.4)

Now working as in Theorem 3.1 we obtain the desired result.
Theorem 3.3. If f (z) ∈ Qµk (a, c, λ, α) then f (z) ∈ Qµ+1
(a, c, λ, α), for |z| < r0 ,
k
where
1 p
r0 = { 4 + µ(µ + 2) − 2}.
(3.5)
4
Proof. Since f (z) ∈ Qµk (a, c, λ, α), so working in the same way as in Theorem 3.1,
we have
′′

z (Iµ (a, c)f (z))´+ λz 2 (Iµ (a, c)f (z))
= H(z)

(1 − λ)Iµ (a, c)f (z) + λz (Iµ (a, c)f (z))´
185

(3.6)

S. Hussain - A new class of meromorphic functions

=



k 1
+
4 2



h1 (z) −



k 1

4 2



h2 (z),

where hi ∈ P (α) for i = 1, 2.
From (1.9) , (3.6) and after some simplification, we have
′′

z (Iµ+1 (a, c)f (z))´+ λz 2 (Iµ+1 (a, c)f (z))

(1 − λ)Iµ+1 (a, c)f (z) + λz (Iµ+1 (a, c)f (z))´

=





zh1´(z)
k 1
h1 (z) +
+
4 2
−h1 (z) + (µ + 1)



k 1
zh2´(z)


h2 (z) +
.
4 2
−h2 (z) + (µ + 1)

(3.7)

Let hi (z) = (1 − α)pi (z) + α. Then (3.7) becomes
"
#
′′
z (Iµ+1 (a, c)f (z))´+ λz 2 (Iµ+1 (a, c)f (z))
1

−α
1−α
(1 − λ)Iµ+1 (a, c)f (z) + λz (Iµ+1 (a, c)f (z))´
=



k 1
+
4 2


p1 (z) +

Now consider

Re hi (z) +

zp1´(z)
−h1 (z) + (µ + 1)







k 1

4 2


p2 (z) +


zp2´(z)
.
−p2 (z) + (µ + 1)
(3.8)






zh´i (z)
zh´i (z)

.
≥ Re hi (z) −
−hi (z) + (µ + 1)
−hi (z) + (µ + 1)

Using the well known distorsion bounds for the class P , we have

Re hi (z) +

"

zh´i (z)
2r
≥ Re hi (z) 1 +
−hi (z) + (µ + 1)
1 − r2

1+r
1−r

1
− (µ + 1)


(1 + r)[(1 + r) − (µ + 1)(1 − r)] + 2r
.
= Re hi (z)
(1 + r)[(1 + r) − (µ + 1)(1 − r)]


#
(3.9)

The right hand side of (3.9) is positive for r ≥ r0 . Consequently, f (z) ∈ Qµ+1
(a, c, λ, α)
k
for |z| < r0 , where r0 is given by (3.5).

References
186

S. Hussain - A new class of meromorphic functions

[1] B. C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions,
SIAM J. Math. Anal., 15(1984), 737-745.
[2] N. E. Cho and K.I. Noor, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo- Srivastava operator, J. Math. Anal.
Appl., 320(2006), 779-786.
[3] J. L. Liu and H.M. Srivastava, A linear operator and associated families of
meromorphically multivalued functions, J. Math. Anal. Appl., 259(2001), 566-581.
[4] S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer.
Math. Soc., 81(1975), 79-81.
[5] K. S. Padmanbhan, R. Paravatham, Properties of a class of functions with
bounded boundary rotation, Ann. Polon. Math. , 31(1975), 311-323.
[6] B. Pinchuk, Functions of bounded boundary rotation, Isr. J. Math. ,
10(1971), 6-16.
Author:
Saqib Hussain
Department of Mathematics,
COMSATS Institute of Information Technology,
Abbottabad, Pakistan
email: saqib math@yahoo.com

187

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52