dekoninck7. 256KB Jun 04 2011 12:08:35 AM

1

2
3

47

6

Journal of Integer Sequences, Vol. 13 (2010),
Article 10.1.2

23 11

Some Remarks on a Paper of L. Toth
Jean-Marie De Koninck
D´ep. de math´ematiques
Universit´e Laval
Qu´ebec, PQ G1V 0A6
Canada
jmdk@mat.ulaval.ca

Imre K´atai
Computer Algebra Department
E¨otv¨os Lor´and University
P´azm´any P´eter S´et´any I/C
1117 Budapest
Hungary
katai@compalg.inf.elte.hu
Abstract
Pn
Consider the functions P (n) :=
k=1 gcd(k, n) (studied by Pillai in 1933) and
Q
e
P (n) := n p|n (2 − 1/p) (studied by Toth in 2009). From their results, one can
P
P
obtain asymptotic expansions for n≤x P (n)/n and n≤x Pe(n)/n. We consider two
wide classes of functions R and U of arithmetical functions which include P (n)/n and
Pe(n)/n
given R ∈ R and U ∈PU, we obtain asymptotic expansions

P For any P
P respectively.
for n≤x R(n), n≤x U (n), p≤x R(p − 1) and p≤x U (p − 1).

1

Introduction

In 1933, Pillai [6] introduced the function
P (n) :=

n
X
k=1

1

gcd(k, n)

and showed that

P (n) =

X

dϕ(n/d)

d|n

and

X

P (d) = nτ (n) =

d|n

X

σ(d)ϕ(n/d),


d|n

where ϕ stands for the Euler function and where τ (n) and σ(n) stand for the number of
divisors of n and the sum of the divisors of n respectively.
It is easily shown that

Y
a/(a + 1)
P (n) = nτ (n)
1−
.
p
a
p kn

In 1985, Chidambaraswamy and Sitaramachandrarao [2] showed that, given an arbitrary
ε > 0,
X

(1)

P (n) = e1 x2 log x + e2 x2 + O x1+θ+ε ,
n≤x



1
1 ζ ′ (2)
1
where e1 =
2γ − −
, and where θ is the constant appearing
and e2 =
2ζ(2)
2ζ(2)
2
ζ(2)
below in Lemma 5, ζ stands for the Riemann Zeta Function and γ stands for Euler’s constant.
Using partial summation, one easily deduces from (1) that
X P (n)
n≤x


n


= e1 x log x + (2e2 − e1 )x + O xθ+ε .

In [10], Toth introduced the function


Y
Y
1
1
ω(n)
e
1−
2−
P (n) = n
=n·2
,

p
2p
p|n

(2)

p|n

where ω(n) stands for the number of distinct prime factors of n. Toth obtained an estiP
mate for n≤x Pe(n), analogous to (1) and from which one can easily derive an asymptotic
P
expansion for n≤x Pe(n)/n.
In this paper, we consider two wide classes of arithmetical functions R and U, the first
of which includes the function P (n)/n, and theP
second of which includes Pe(n)/n. Given
R ∈ R, we obtain an asymptotic
expansion P
for n≤x R(n); similarly for U ∈ U. We then
P
examine the behavior of p≤x R(p − 1) and p≤x U (p − 1).

More precisely, the class R is made
Q of the following functions R. First, let γ(n) stand for
the kernel of n ≥ 2, that is γ(n) = p|n p (with γ(1) = 1). Then, given an arbitrary positive
constant c, an arbitrary real number α > 0 and a multiplicative function κ(n) satisfying
c
|κ(n)| ≤
for all n ≥ 2, let R ∈ R be defined by
γ(n)α
X
Y
R(n) = Rκ,c,α (n) := τ (n)
κ(d) = τ (n)
(1 + κ(pa )).
(3)
dkn

2

pa kn


Here dkn means that the sum runs over the unitary divisors of n, that is over all divisors d
of n for which (d, n/d) = 1.
a/(a + 1)
It is easily seen that if we let κ(pa ) = −
, then the corresponding function R(n)
p
is precisely P (n)/n.
As for the class of functions U, it is made of the functions
X
h(d),
(4)
U (n) = Uh,c,α (n) := 2ω(n)
d|n

c
for each integer d ≥ 2, where
γ(d)α
1
and h(pa ) = 0 for a ≥ 2,
α > 0 is a given number. It is easily seen that by taking h(p) = − 2p

we obtain the particular case U (n) = Pe(n)/n.
Throughout this paper, c1 , c2 , . . . denote absolute positive constants.
where h is a multiplicative function satisfying |h(d)| ≤

2

Main results

Theorem 1. Let R be as in (3). For any arbitrary ε > 0, as x → ∞,
X

T (x) :=
R(n) = A0 x log x + B0 x + O xβ ,
n≤x

with



θ + ε,

if α ≥ 1 − θ;
1 − α + ε, if α < 1 − θ;
where θ is the number mentioned in Lemma 5 below and where
X λ(d)
X λ(d)
and
B0 =
(2γ − 1 − log d),
A0 =
d
d
d≥1
d≥1
β=

(5)

the function λ being defined below in (20) and (21).
Theorem 2. Let U be as in (4). As x → ∞,


X
x
,
S(x) :=
U (n) = t1 x log x + t2 x + O
log
x
n≤x

where

t1



X
h(δ)2ω(δ) B1 (δ)ηδ X 1
=
,
δ
n
n=1
δ=1
γ(n)|δ

t2


X

h(δ)2ω(δ)
=
B2 (δ)ηδ − 2B1 (δ)µδ − B1 (δ)ηδ log(δb) ,
δb
δ=1
b∈Gδ

where B1 (δ) and B2 (δ) are defined below in Lemma 7, while ηδ and µδ are defined respectively
in (35) and (36).
3

Theorem 3. Let R be as in (3). As x → ∞,
X

M (x) :=

R(p − 1) = K1 x + O

p≤x

where K1 =



x
log log x



,

(6)



1 X κ(d)τ (d)cd
, where cd is itself defined in Lemma 15.
2 d=1
d

Theorem 4. Let U be as in (4). As x → ∞,
N (x) :=

X
p≤x

U (p − 1) = K2 x + O



x
log log x



,

(7)

where K2 is a positive constant which may depend on the function κ.

3

Preliminary results

Lemma 5. As x → ∞,
X
D(x) :=
τ (n) = x log x + (2γ − 1)x + O(xθ )

(x → ∞),

n≤x

(8)

for some positive constant θ < 1/3.
Proof. A proof can be found in the book of Ivi´c [4], where one can also find a history of the
improvements concerning the size of θ.
Lemma 6. Given 1 ≤ ℓ < k with gcd(ℓ, k) = 1,
X

τ (n) = A1 (k)x log x + A2 (k)x + O k 7/3 x1/3 log x ,
n≡ℓ

n≤x
(mod k)

where
A1 (k) =

ϕ(k)
,
k2

A2 (k) = (2γ − 1)

ϕ(k) 2 X µ(d) log d

.
k2
k
d
d|k

Proof. This result is due to Tolev [9].
Lemma 7. Given a positive integer k,
X

τ (n) = B1 (k)x log x + B2 (k)x + O k 10/3 x1/3 log x ,
n≤x
(n,k)=1

where B1 (k) =



ϕ(k)
k

2

and

B2 (k) = ϕ(k)A2 (k).
4

Proof. Observing that
X

τ (n) =

k
X

X

τ (n),

ℓ=1
n≤x
gcd(ℓ,k)=1 n≡ℓ (mod k)

n≤x
gcd(n,k)=1

and using the trivial fact that ϕ(k) ≤ k, the result follows immediately from Lemma 6.
Lemma 8. Given an arbitrary positive real number α < 1,
X

1
1
≪ α.
α
nγ(n)
x
n>x

Proof. Writing each number n as n = rm, where r and m are the square-full and square-free
parts of n respectively with (r, m) = 1, we may write
X

1
nγ(n)α
n>x

=

X

µ2 (m)
=
rγ(r)α m1+α

X

1 ϕ(r)
rγ(r)α r

rm>x
gcd(r,m)=1
r square-full


=

r≥1
r square-full

Z

r≥1
r square-full



x/r

X

dt
t1+α

1
rγ(r)α

1
= α
x



1
p−1
1 Y
≪ α.
1 + 2 1−α
α
x p
p (p
− 1)
x

X

m>x/r
gcd(m,r)=1

X

r≥1
r square-full

µ2 (m)
m1+α

ϕ(r)
r2



r
γ(r)



Lemma 9. Given any fixed number z > 0,
X
z ω(n) ≪ x logz−1 x.

(9)

n≤x

Remark 10.

This result is a weak form of the well known Selberg-Sathe formula
X
z ω(n) = C(t)x logt−1 x + O(x logt−2 x),
n≤x

an estimate which holds uniformly for x ≥ 2 and |t| ≤ 1, where C(t) is a constant depending
only on t (see Selberg [7]). Here we give a simple direct proof of (9).
Proof. For each positive integer k, let
πk (x) := #{n ≤ x : ω(n) = k}.
5

From a classical result of Hardy and Ramanujan [3], we know that
πk (x) ≤

c1 x
(log log x + c2 )k−1
(k − 1)! log x

(x ≥ 3),

for all k ≥ 1, where c1 and c2 are some absolute constants. Using this estimate, it follows
that
X

X

x X (z(log log x + c2 ))k−1
log x k≥1
(k − 1)!
k≥1
x z log log x+zc2
x z log log x
= c1 z
e
e
= x logz−1 x,

log x
log x

z ω(n) =

n≤x

πk (x)z k < c1 z

as required.

Lemma 11. (Brun-Titchmarsh Theorem) Let π(y; k, ℓ) := #{p ≤ y : p ≡ ℓ (mod k)}.
Given a fixed positive number β < 1, then, uniformly for k ∈ [1, xβ ], there exists a positive
constant ξ1 such that
x
.
π(x; k, ℓ) < ξ1
ϕ(k) log(x/k)
Proof. For a proof, see Titchmarsh [8].

Lemma 12. (Bombieri-Vinogradov Theorem). Given an arbitrary positive constant
A, and let B = 32 A + 17. Then


X


li(x)
≪ x .
max max π(y; k, ℓ) −
y≤x
gcd(k,ℓ)=1
ϕ(k)

logA x
x
k≤

logB x

Proof. For a proof, see Cheng-Dong [1].

Lemma 13. Given a fixed positive number β < 1, then, uniformly for d ∈ [1, x1−β ], there
exists a positive constant ξ3 such that
X

p≡1

p≤x
mod d

τ (p − 1) ≤ ξ3 x

6

τ (d)
.
ϕ(d)

Proof. Since τ (n) ≤ 2
that

X

d|n

d≤ n

1 and τ (mn) ≤ τ (m)τ (n) for all positive integers m, n, it follows

E: =
p≡1

X

p≤x
(mod d)

≤ τ (d)
p≡1

≤ 2τ (d)

X



τ(

p≤x
(mod d)

X

u≤

On the other hand, since du =
of Lemma 11, that

τ (p − 1)



p−1
)
d

π(x; du, 1).

(10)

x/d


√ √
β
β
1
1
d · u d ≤ d · x ≤ x 2 − 2 · x 2 = x1− 2 , we have, in light

π(x; du, −1) ≤ ξ1

x
x
≤ ξ2
,
ϕ(du) log(x/du)
ϕ(du) log x

(11)

with ξ2 = 2ξ1 /β. Using (11) in (10) and keeping in mind that ϕ(d)ϕ(u) ≤ ϕ(du) for positive
integers d, u, we obtain that
E ≤ 2ξ2

X
x
τ (d)
log x

u≤

≤ 2ξ2

x/d

x τ (d) X
log x ϕ(d) √
u≤

≤ ξ3 x

1
ϕ(du)
1
ϕ(u)

x/d

τ (d)
,
ϕ(d)

for some positive constant ξ3 , where we used the fact that

X
n≤y

the proof of the lemma.

Lemma 14. Given fixed numbers A > 0 and κ < α, then
X

d≥logA x

1
τ (d)

.
dγ(d)α
logAκ x

7

1
≪ log y, thus completing
ϕ(n)

Proof. Clearly we have
X

A

d≥log x

τ (d)
dγ(d)α

X



d≥logA x

τ (d)
dγ(d)α



d
logA x



X
τ (d)
1

1−κ
d γ(d)α
log x
d≥logA x

Y
2
2
1
1 + 1−κ α + 2(1−κ) α + . . .
p p
p
p
logAκ x p

=
<


1
,
logAκ x

since the above infinite product converges in light of the fact that κ < α.
Lemma 15. Given a fixed positive integer D, then
X
1
= cD log x + O(1),
ϕ(n)
n≤x
gcd(n,D)=1

where
cD =

Y
p

1
1+
p(p − 1)

 Y
1+
·
p|D

p
(p − 1)2

−1

.

Remark 16.
Note that the result of Lemma 15 is known in a more precise form (see the
book of Montgomery and Vaughan [5, pp. 42–43]).
Proof. We first compute the generating series of n/ϕ(n). We have


X
Y
n/ϕ(n)
(1 − 1/p)−1 (1 − 1/p)−1
1+
=
+
+ ...
ns
ps
p2s
n=1
gcd(n,D)=1

p6|D


Q 
(1−1/p)−1
(1−1/p)−1
+
+
.
.
.
1
+
s
2s
p
p
p

= Q 
−1
(1−1/p)
(1−1/p)−1
1
+
+
+
.
.
.
p|D
ps
p2s


Q
(1−1/p)−1
(1−1/p)−1


1
+
+
+
.
.
.
Y
p
ps
p2s
1

= ζ(s)
1− s Q 
(1−1/p)−1
(1−1/p)−1
p
1+
+
+ ...
p
p|D

= ζ(s)

Y
p

1
1+ s
p (p − 1)

Y
p|D

ps

p
1+
(p − 1)(ps − 1)

which by Wintner’s Theorem yields
X
n
= cD x + O(x1/2 log x),
ϕ(n)
n≤x
gcd(n,D)=1

8

p2s

−1

,

(12)

where
cD =

Y
p

1
1+
p(p − 1)

 Y
1+
·
p|D

p
(p − 1)2

−1

.

Then, using partial summation, we get that
 Z x

X
1
dt
log x
cD + O(1) = cD log x + O(1),
+
= cD + O
1/2
ϕ(n)
x
t
1
n≤x
gcd(n,D)=1

as required.

Lemma 17. For each integer δ ≥ 2, let Gδ be the semigroup generated by the prime factors
of δ, i.e. for δ = q1α1 . . . qrαr , let Gδ = {q1β1 . . . qrβr : βi ≥ 0}. Then

X
X 1
1
=
≪ log log δ.
n
n
n=1
n∈G
δ

γ(n)|δ

Proof. Using the well known result of Landau
lim sup
n→∞

n
= eγ ,
ϕ(n) log log n

we certainly have that there exists some constant C > 0 such that
n
< C log log n
ϕ(n)

(n ≥ 3),

from which is follows easily that
−1
 Y

X
Y
1
1
1
1
1−
1 + + 2 + ... =
=
n
p p
p
n=1
p|δ

γ(n)|δ

=

p|δ

δ
< C log log δ,
ϕ(δ)

which proves our result.

Lemma 18. Let Gδ be as in Lemma 17. Then

X
|h(δ)|2ω(δ) X 1
< +∞.
δ
b
b∈G
δ=1
δ

9

Proof. In light of Lemma 17, the fact that |h(δ)| ≤

c
and since given any ε > 0, log δ < δ ε
γ(δ)α

provided δ ≥ δ0 (ε), we have


X
X
|h(δ)|2ω(δ) X 1
|h(δ)|2ω(δ) log log δ

δ
b
δ
δ=1
b∈G
δ=1
δ




X
2ω(δ) log log δ

δγ(δ)α

δ=1

X

2ω(δ)
δ 1−ε γ(δ)α
δ=δ0

Y
2
2
<
1 + 1−ε α + 2−2ε α + . . .
p p
p
p
p


Y
2
< +∞,
=
1 + α 1−ε
p (p − 1)
p



provided ε < α.
Lemma 19. Let Gδ be as in Lemma 17 and let ρ(x) be a real function which tends to +∞
as x → ∞. Given any fixed positive constant κ < α, we have
Z(x) :=

X

ρ(x)ρ(x)
δb>ρ(x)
δb>ρ(x)
b∈Gδ

δρ(x)/δ
b∈G

δx
Substituting (24) and (25) in (23), one obtains

T (x) = A0 x log x + B0 x + O x

where A0 =
Since


X
λ(d)
d=1

d

it follows that

d

d=1

X |λ(d)|
d≤x


X
λ(d)

and B0 =



x

θ


1−α+ε

+ O xθ

X |λ(d)|
d≤x



!

,

(26)

(2γ − 1 − log d).


X cτ (d)c4
xε ,
if θ + α ≥ 1;


1−(θ+α)
θ
α
x
, if θ + α < 1;
d γ(d)
d≤x
X |λ(d)|
d≤x







xθ+ε , if θ + α ≥ 1;
x1−α , if θ + α < 1.

Using this last estimate in (26) completes the proof of Theorem 1.

5

Proof of Theorem 2

Since


X
2ω(n)
n=1

we have that

ns

=

ζ 2 (s)
ζ(2s)

2ω(n) =

X

(ℜ(s) > 1),

µ(d)τ (e).

(27)

d2 e=n

Let Gδ be as in the statement of Lemma 17. If δ|n, then let m be the largest divisor of n/δ
which is co-prime with δ, and let b = b(δ) ∈ Gδ be defined implicitly by n = δ · b · m. Note
that with this setup, the numbers m and b are uniquely determined, and we therefore have
2ω(n) = 2ω(δ) · 2ω(m) . Hence,
X X
X
S(x) =
h(δ)2ω(δ)
2ω(m)
b≤x/δ
m≤ x
δb
b∈Gδ gcd(m,δ)=1

δ≤x

X

=

ω(δ)

h(δ)2

δ≤x

X



b≤x/δ
b∈Gδ

x

say. We therefore need to estimate
Ek (X) :=

X

n≤X
gcd(n,k)=1

13

2ω(n) .

δb

,

(28)

Observe that it follows from (27) that
X

Ek (X) =

µ(d)


d≤ X
gcd(d,k)=1

X

X

τ (e) =

where

X

Vk (y) :=

µ(d)Vk


d≤ X
gcd(d,k)=1

d2 e≤X
gcd(e,k)=1



X
d2



,

(29)

τ (n),

n≤y
gcd(n,k)=1

while we trivially have
Ek (X) ≪ X log X.

(30)

We shall now make use of a function ρ(x) satisfying
np
o

exp
log x ≤ ρ(x) ≤ x

(31)

and which we will later determine more precisely.
We first write (29) as
X

Ek (X) =

µ(d)Vk

d≤ρ(X)
gcd(d,k)=1



X
d2



+

X

µ(d)Vk


ρ(X)x1/10
K,L∈Gd

1
KL



KL
x1/10

1/2

(log x)ε
1
2 < 1/20 .

x
1 − √1p

(71)

Estimates (68), (70) and (71) therefore establish that we can drop from the sum in (67)
those K,L ∈ Gd forwhich KL > logD x for a large D, the error thus created being no larger
li(x)
. In light of these observations and using the fact that ϕ(δ 2 KLde
u) =
than O
(log x)D/3
KLϕ(δ 2 de
u) and that
X

K,L∈Gd
KL(log x) 0

≪ (log x)

X

1
1
2
ϕ(δ1 d) ϕ(δ22 )

X

u
f
1 ∈Gδ2

u
f
1 >(log x) 0

1
ue1

X 1
log x
1

ϕ(δ12 d)ϕ(δ22 ) (log x)∆0 /2
ue1
u
f1 ∈Gδ2
−1
Y
1
1
1−∆0 /2
1− √
≪ (log x)
δ12 ϕ(d)ϕ(δ22 )
p


p|δ2

≪ (log x)1−∆0 /2

ω(δ2 )

1 2
.
ϕ(d) δ12 δ22

On√the other hand, the contribution of those ue1 ≤ (log x)∆0 in Yd (x), as ue2 runs up to
y0 := x/((log x)C ue1 ), and also using Lemma 15 so that
X
1
1
= cdδ log x + O(log log x),
ϕ(ue2 )
2
gcd(u
f ,dδ)=1
2
u
f
2 ≤y0

we get

Yd (x) =

X 1
1
1
1
cdδ (log x + log log x)
2
2
2
ϕ(δ1 d) ϕ(δ2 )
ue1
u
f1 ∈Gδ2

 ω(δ2 )
2
1−C0 /2
.
(log x)
+O
δ 2 ϕ(d)

(74)

Observing that ϕ(δ12 d) = δ12 ϕ(d) and that
−1
Y 
X 1
1
δ2
=
,
1−
=
u
e
p
ϕ(δ2 )

u
e∈Gδ2

(74) becomes

Yd (x) =

p|Gδ2

1 cdδ 1
δ2
(log x + log log x)
2 2
2 ϕ(d) δ1 δ2 ϕ(δ2 )
 ω(δ2 )

2
1−C0 /2
+O
.
(log x)
δ 2 ϕ(d)
24

(75)

Using (75) in (72), we obtain
cd δ
B(x) = (li(x) − li(x/2)) 2
(log x + log log x)
δ1 δ2 ϕ(δ2 )
 ω(δ2 )

2
1−C0 /2
+O
.
(log x)
δ 2 ϕ(d)
Finally, summing over d ≤ (log x)A and δ ≤ (log x)B , the theorem follows.

7

Final remarks

It is interesting to inquire about the solutions to the equation

or equivalently

Pe(n) = Pe(n + 1),

n Y
n+1 Y
(2p − 1) =
(2q − 1).
γ(n)
γ(n + 1)
p|n

(76)

(77)

q|n+1

The first 13 solutions are 45, 225, 1125, 2025, 3645, 140 625, 164 025, 257 174, 703 125,
820 125, 1 265 625, 2 657 205 and 3 515 625.
a b
One can easily check that if for some positive integers a and b, the number p = 3 ·52 +1 is
a prime number, then n = 3a · 5b is a solution of (76), with Pe(n) = 3a+1 · 5b . If one could
prove that there exist infinitely many primes of this form, it would follow that equation (76)
has infinitely many solutions. Interestingly, a computer search establishes that (76) has 37
solutions n < 1010 and that 21 of them are of the form n = 3a · 5b .
Moreover, all 37 solutions n0 are such that 33 · 5|Pe(n0 ). To see that 3|n0 , proceed as
follows. Suppose that 3 6 | Pe(n0 ), then, in light of (77), 3 6 | (2p − 1) for each prime divisor p
of n and 3 6 | (2q − 1) for each prime divisor q of n + 1. This would imply that p ≡ 1 (mod 3)
for all p|n (implying that n ≡ 1 (mod 3)) and q ≡ 1 (mod 3) for all q|n + 1 (implying that
n + 1 ≡ 1 (mod 3)), a contradiction.
The fact that 3|Pe(n0 ) clearly implies that 5|Pe(n0 ).

8

Acknowledgement

The authors would like to thank the referee for some very helpful suggestions which improved
the quality of this paper.

References
[1] P. Cheng-Dong, A new mean value theorem and its applications, in Recent Progress in
Analytic Number Theory, Vol. 1, (Durham, 1979), Academic Press, 1981, pp. 275–287.

25

[2] J. Chidambaraswamy and R. Sitaramachandrarao, Asymptotic results for a class of
arithmetical functions, Monatsh. Math. 99 (1985), 19–27.
[3] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n,
Quart. J. Math. 48 (1920), 76–92.
[4] A. Ivi´c, The Riemann Zeta Function, John Wiley & Sons, New York, 1985.
[5] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2007.
[6] S. S. Pillai, On an arithmetic function, J. Annamalai Univ. 2 (1933), 243–248.
[7] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83–87.
[8] E. C. Titchmarsh, A divisor problem, Rend. Palermo 54 (1930), 414–429 and 57 (1933),
478–479.
[9] D. I. Tolev, On the divisor problem in arithmetic progressions, C. R. Acad. Bulgare Sci.
41 (1988), 33–36.
[10] L. Toth, A gcd-sum function over regular integers modulo n, J. Integer Sequences 12
(2009), Article 09.2.5.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
Keywords: gcd-sum function, Dirichlet divisor problem, shifted primes.

Received August 31 2009; revised version received December 29 2009. Published in Journal
of Integer Sequences, December 31 2009.
Return to Journal of Integer Sequences home page.

26

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52