art. rev 2REZ. 135KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS

UNIVALENCE FOR INTEGRAL OPERATORS
by
Daniel Breaz, Nicoleta Breaz
Abstract: We study in this paper two integral operators and we determine the conditions for
univalence for these integral operators.

Let A be the class of the functions f, which are analytic in the unit disc
U = {z ∈ C ; z < 1} and f (0) = f ' (0) − 1 = 0 and denote by S the class of univalent
functions.
Teorema 1 [4] If f ∈ S , α ∈ C and α ≤ 1 / 4 then the function:

Gα ( z ) = ∫ [ f ′(t )] dt
α

z

0

is univalent in U.

Teorema 2 [3] If the function g ∈ S , α ∈ C , α ≤ 1 / 4n , then the function defined by

[

]

Gα ,n ( z ) = ∫ f ′(t n ) dt
z

is univalent in U for n ∈ N .
Teorema 3 [2]
Let α , a ∈ C , Re α > 0 and f ∈ A .
If

0

α

*


1− z

2 Re α

zf " ( z )
≤ 1 (∀) z ∈ U
f ' ( z)
Re α
then (∀) β ∈ C , Re β ≥ Reα , the function
 z

Fβ ( z ) =  β ∫ t β −1 f ' (t )
 0


is univalent.

51

1/ β


ACTA UNIVERSITATIS APULENSIS
Teorema 4 [1] If the function g is holomorphic in U and g ( z ) < 1 in U then
(∀)ξ ∈ U and z ∈ U the following inequalities hold:

g (ξ ) − g ( z )

1 − g ( z )g (ξ )
g ' ( z) ≤
the equalities hold in case g ( z ) =

ξ −z
,
1 − zξ



1 − g ( z)

ε (z + t)

1 + tz

1− z

, where ε = 1 and

g (ξ ) − g (0)

1 − g (0)g (ξ )
g (ξ ) =

2

2

Remark 5 [1]
For z = 0, the inequalities (1) are the form:

and


(1)

u < 1.

≤ξ

ξ + g ( 0)
.
1 + g ( 0) ⋅ ξ

Considering g(0) = a and ξ = z ⇒ g ( z ) ≤

z+a

(∀) z ∈ U .

1+ a ⋅ z

Lemma 6 (Schwartz)
If the function g is holomorphic in U, g(0) = 0 and g (z ) ≤ 1 (∀) z ∈ U , then:


g ( z) ≤ z
(∀)z ∈ U and g ' (0) ≤ 1
the equalities hold in case g(z) = z, where =1.

Theorem 7. Let α, , , , complex number with the properties Reδ = a >0, f,g ∈ A
f = z + a 2 z 2 + ... , g = z + b2 z 2 + ...,

f "( z) 1
≤ , (∀) z ∈ U ,
f ' ( z) n

(2)

g" ( z ) 1
≤ , (∀) z ∈ U ,
g ' ( z) n
n + 2a  n + 2a  2 a
⋅
αβ ≤


2
 n 
n

52

(3)

ACTA UNIVERSITATIS APULENSIS

and
+

α

1

Then (∀)γ ∈ C , Re γ ≥ a the function:


β

1

< 1.

[

(4)

] [

]


 z
α
β
Dα , β ,γ , n ( z ) = γ ∫ t γ −1 ⋅ f ' (t n ) ⋅ g ' (t n ) dt 


 0

1/ γ

is univalent (∀)n ∈ N * \ {1} .

Proof: We consider the function:

h( z ) = ∫0 [ f ′(t n )]α [ g ′(t n )] β dt
z

(5)

The function
p( z ) =

αβ
1




h" ( z )
h' ( z )

(6)

where αβ satisfies the conditions (3).
We obtain:

{

h′′( z )
1 [ f ′(t n )]α ⋅ [ g ′(t n )] β

=

p( z ) =
αβ h ′( z ) αβ [ f ′(t n )]α ⋅ [ g ′(t n )] β
1


=

=

αβ
1



(

α ⋅ n ⋅ z n −1 ⋅ f ′( z n )

)

α −1

}′ =

[ ] + [ f ′( z )]
[ f ′( z )] ⋅ [g ′( z )]

⋅ f ′′( z n ) ⋅ g ′( z n )
n

β

α

α α ⋅ n ⋅ z n −1 ⋅ f ′′( z n )
β n ⋅ z n −1 ⋅ g ′′( z n )

+

αβ
αβ
f ′( z n )
g ′( z n )

We respect the conditions (2), (4) and (7) we have:

53

n

n

α

β

(

⋅ β ⋅ n ⋅ z n −1 g ′( z n )

(7)

)

β −1

⋅ g ′′( z n )

=

ACTA UNIVERSITATIS APULENSIS

p( z ) =




α nz n−1 ⋅ f " ( z n ) β nz n−1 ⋅ g" ( z n )

+


αβ
αβ
f '(z n )
g'(z n )

α nz n −1 ⋅ f " ( z n )
β n ⋅ z n −1 ⋅ g " ( z n )

+


αβ
αβ
f '(z n )
g'(z n )

α
β
f "(z n )
g" ( z n )
n −1
n
z
⋅ n ⋅ z n −1 ⋅
+




α β
f '(z n ) α β
g'(z n )


⋅n⋅

β

1

1 1
1 1
1
+ ⋅n⋅ =
+
< 1.
n α
n α
β

p (0) = 0
By Schwartz lemma we have:

αβ
1



h" ( z )
h" ( z )
n −1
≤ z
≤ z ⇔
≤ αβ ⋅ z n −1 ⇔
h' ( z )
h' ( z )

 1 − z 2a
⇔
 a


 zh" ( z )
⋅
≤ αβ
 h' ( z )


 1 − z 2a
⋅
 a


 n
⋅ z



Let’s the function Q : [0,1] → R, Q( x) =

(8)

1 − x 2a n
⋅x ,x = z .
a

We have
2
 n  2a
Q( x) ≤
⋅
 , (∀) x ∈ [0,1] .
n + 2 a  n + 2a 
n

.
Respect the conditions (3) and (8) we obtain:

54

ACTA UNIVERSITATIS APULENSIS
 1 − z 2a

 a


 z ⋅ h" ( z )
⋅
≤ 1.
 h' ( z )


In this conditions applying the theorem 3 we obtain:

[

] [

]


 z
α
β
Dα , β ,γ , n ( z ) = γ ∫ t γ −1 ⋅ f ' (t n ) ⋅ g ' (t n ) dt 

 0

1/ γ

is univalent (∀)n ∈ N * \ {1} .
Corollary 8 [5]. Let α , γ ∈ C , Re α = a > 0, g ∈ A
If
g" ( z ) 1

(∀) z ∈ U
g ' ( z) n
and
n + 2 a  n + 2a 


2  n 
then (∀) β ∈ C , Re β ≥ a, the function

γ ≤

[

n / 2a

]

 z
γ 
G β ,γ ,n ( z ) =  β ∫ t β −1 g ' (t n ) 
 0


1/ β

is univalent (∀)n ∈ N * \ {1} .

Theorem 9. Let α, , , complex number, Re δ = c > 0 , and the functions f , g ∈ A

f = z + a 2 z 2 + ... , g = z + b2 z 2 + ..., .
If f and g satisfy the conditions
f "( z)
g" ( z )

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52