Localization getdoceca0. 357KB Jun 04 2011 12:05:09 AM

is that you cannot define properly the ESFP or a somewhat similar process because you cannot prove that it is a Markov process. Such a process is important since its IPM encodes what the asymptotic behaviour of the process should be. The reason why the ESFP is not a Markov process is the following. Roughly speaking, it stands for an observer sitting on a particle X ε t and looking at the environment τ X ε t ω around the particle. For this process to be Markovian, the observer must be able to determine, at a given time t, the future evolution of the particle with the only knowledge of the environment τ X ε t ω. In the case of RSDE, whenever the observer sitting on the particle wants to determine the future evolution of the particle, the knowledge of the environment τ X ε t ω is not sufficient. He also needs to know whether the particle is located on the boundary ∂ D to determine if the pushing of the local time K ε t will affect the trajectory of the particle. So we are left with the problem of dealing with a process X ε possessing no IPM.

2.1 Localization

To overcome the above difficulty, we shall use a localization technique. Since the process X ε is not convenient to work with, the main idea is to compare X ε with a better process that possesses, at least locally, a similar asymptotic behaviour. To be better, it must have an explicitly known IPM. There is a simple way to find such a process: we plug a smooth and deterministic potential V : ¯ D → R into 4 and define a new operator acting on C 2 ¯ D L ǫ V = e 2V x 2 d X i, j=1 ∂ x i e −2V x a i j τ x ǫ ω∂ x j = L ǫ − ∂ x i V xa i j τ x ǫ ω∂ x j , 7 with the same boundary condition γ i τ x ǫ ω∂ x i = 0 on ∂ D. If we impose the condition Z ¯ D e 2V x d x = 1 8 and fix the environment ω, we shall prove that the RSDE with generator L ǫ V inside D and boundary condition γ i τ x ǫ ω∂ x i = 0 on ∂ D admits e 2V x d x as IPM. Then we want to find a connection between the process X ε and the Markov process with generator L ǫ V inside D and boundary condition γ i τ x ǫ ω∂ x i = 0 on ∂ D. To that purpose, we use the Girsanov transform. More precisely, we fix T 0 and impose V is smooth and ∂ x V is bounded. 9 Then we define the following probability measure on the filtered space Ω ′ ; F , F t ≤t≤T dP ǫ∗ x = exp − Z T ∂ x i V X ǫ r σ i j τ X ǫ r ǫ ω d B j r − 1 2 Z T ∂ x i V X ǫ r a i j τ X ǫ r ǫ ω∂ x j V X ǫ r d r dP ǫ x . Under P ǫ∗ x , the process B ∗ t = B t + R t στ X ǫ r ǫ ω∂ x V X ǫ r d r 0 ≤ t ≤ T is a Brownian motion and the process X ǫ solves the RSDE d X ǫ t = ǫ −1 b τ X ǫ t ǫ ω d t − aτ X ǫ t ǫ ω∂ x V X ǫ t d t + στ X ǫ t ǫ ω d B ∗ t + γτ X ǫ t ǫ ω d K ǫ t 10 994 starting from X ǫ = x, where K ǫ is the local time of X ǫ . It is straightforward to check that, if B ∗ is a Brownian motion, the generator associated to the above RSDE coincides with 7 for sufficiently smooth functions. To sum up, with the help of the Girsanov transform, we can compare the law of the process X ε with that of the RSDE 10 associated to L ǫ V . We shall see that most of the necessary estimates to homogenize the process X ε are valid under P ǫ∗ x . We want to make sure that they remain valid under P ǫ x . To that purpose, the probability measure P ǫ x must be dominated by P ǫ∗ x uniformly with respect to ε. From 9, it is readily seen that C = sup ε0 E ǫ∗ x dP ε x dP ε∗ x 2 1 2 +∞ C only depends on T, |a| ∞ and sup ¯ D |∂ x V |. Then the Cauchy-Schwarz inequality yields ∀ε 0, ∀A F T -measurable subset , P ǫ x A ≤ C P ǫ∗ x A 1 2 . 11 In conclusion, we summarize our strategy: first we shall prove that the process X ε possesses an IPM under the modified law P ǫ∗ , then we establish under P ǫ∗ all the necessary estimates to homogenize X ε , and finally we shall deduce that the estimates remain valid under P ǫ thanks to 11. Once that is done, we shall be in position to homogenize 1. To fix the ideas and to see that the class of functions V satisfying 8 9 is not empty, we can choose V to be equal to V x 1 , . . . , x d = Ax 1 + A1 + x 2 2 + · · · + x 2 d 1 2 + c, 12 for some renormalization constant c such that R ¯ D e −2V x d x = 1 and some positive constant A. Notations for measures. In what follows, ¯ P ǫ resp. ¯ P ǫ∗ stands for the averaged or annealed probability measure M R ¯ D P ǫ x ·e −2V x d x resp. M R ¯ D P ǫ∗ x ·e −2V x d x, and ¯ E ǫ resp. ¯ E ǫ∗ for the corresponding expectation. P ∗ D and P ∗ ∂ D respectively denote the probability measure e −2V x d x ⊗ dµ on ¯D × Ω and the finite measure e −2V x d x ⊗ dµ on ∂ D × Ω. M ∗ D and M ∗ ∂ D stand for the respective expectations.

2.2 Invariant probability measure

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52