The limiting equation getdoc6925. 567KB Jun 04 2011 12:04:28 AM

Lemma 8.4. Assume A4.2. Let id : λ 7→ λ be the identity map. The function ηλ := 1 − 1 λ H α idλ = 1 λ ¯ H α idλ, λ 0, 116 is nonnegative and nondecreasing. Furthermore, η0+ = 0. Proof. Recall the definition of A α χ from 54. By equation 114, we have ληλ = R f λA α dQ. Thus, η is nonnegative. Furthermore, η0+ = 0 follows from the dominated convergence theorem and Assumption A4.2. Let x, y 0. Then ηx + y − ηx = Z xA α f x + yA α − x + yA α f xA α xx + yA α dQ ≥ 0. 117 The inequality follows from ˜ x f ˜ x + ˜ y − ˜x + ˜y f ˜x ≥ 0 for all ˜x, ˜y ≥ 0. The following lemma, due to Athreya [1], translates the x log x-condition 58 into an integrability condition on η . For completeness, we include its proof. Lemma 8.5. Assume A4.2. Let η be the function defined in 116. Then Z 0+ 1 λ ηλ dλ ∞ and ∞ X n=1 ηc r n ∞ 118 for some and then all c 0, r 1 if and only if the x log x-condition 58 holds. Proof. By monotonicity of η see Lemma 8.4, the two quantities in 118 are finite or infinite at the same time. Fix c 0. Using Fubini’s theorem and the substitution v := λA α , we obtain Z c 1 λ ηλ dλ = Z Z c h λA α − 1 + e −λA α λA α 2 i A α 2 d λ dQ = Z A α Z cA α v − 1 + e −v v 2 d v dQ. 119 It is a basic fact that R T 1 v 2 v − 1 + e −v d v ∼ log T as T → ∞.

8.2 The limiting equation

In the following two lemmas, we consider uniqueness and existence of a function Ψ which satisfies: a Ψλ 1 − Ψλ 2 ≤ |λ 1 − λ 2 | for λ 1 , λ 2 ≥ 0, Ψ0 = 0 b Ψλ = H α Ψλ c Ψλ λ → 1 as λ → 0 d ≤ Ψλ 1 ≤ Ψλ 2 ≤ λ 2 ∀ 0 ≤ λ 1 ≤ λ 2 and lim λ→∞ Ψλ = q 120 where q ≥ 0 is as in Lemma 7.1. Notice that the zero function does not satisfy 120c. First, we prove uniqueness. 1141 Lemma 8.6. Assume A4.2 and α 0. If Ψ 1 and Ψ 2 satisfy 120, then Ψ 1 = Ψ 2 . Proof. Notice that Ψ 1 0 = Ψ 2 0. Define Λλ := 1 λ |Ψ 1 λ − Ψ 2 λ| for λ 0 and note that Λ0+ = 0 by 120c. From Lemma 8.1, we obtain for λ 0 Λλ ≤ 1 λ Z ∞ Ψ 1 λe −αs − Ψ 2 λe −αs µ Q ds = Z ∞ Λλe −αs µ Q α ds 121 where µ Q α ds := e −αs µ Q ds is a probability measure because α solves equation 49. Let R i , i ≥ 1, be independent variables with distribution µ Q α and note that ER 1 ∞. We may assume that ER 1 because µ Q [0, ∞ = 0 implies Ψ i = H α Ψ i = 0 for i = 1, 2. Iterating inequality 121, we arrive at Λλ ≤ EΛ λe −αR 1 ≤ EΛ λe −αR 1 +...+R n −→ Λ0+ = 0 as n → ∞. 122 The convergence in 122 follows from the weak law of large numbers. Lemma 8.7. Assume A4.2 and α 0. There exists a solution Ψ of 120 if and only if the x log x- condition 58 holds. Proof. Assume that 58 holds. Define Ψ λ := λ, Ψ n+1 λ := H α Ψ n λ for λ ≥ 0 and Λ n+1 λ := 1 λ Ψ n+1 λ − Ψ n λ for λ 0 and n ≥ 0. Recall µ Q α and R i i ∈ N from the proof of Lemma 8.6. Note that ER 1 0 because of α 0. Arguments as in the proof of Lemma 8.6 imply Λ n+1 λ ≤ EΛ n λe −αR 1 ≤ EΛ 1 λe −αS n 123 where S n := R 1 + . . . + R n for n ≥ 0. Since η ≥ 0 by Lemma 8.4 and Ψ λ − Ψ 1 λ = λ − H α idλ = ληλ, 124 we see that η = Λ 1 . In addition, we conclude from η ≥ 0 that Ψ 1 λ ≤ Ψ λ = λ. By Lemma 8.2, this implies inductively Ψ n λ ≤ λ for n ≥ 0, λ ≥ 0. Let Λλ := P n ≥1 Λ n λ. We need to prove that Λ λ ∞. Clearly 0 Ee −R 1 1, so we can choose ǫ 0 with e ǫ Ee −R 1 1. Then ∞ X n=0 P S n ≤ nǫ ≤ ∞ X n=0 e n ǫ Ee −S n = ∞ X n=0 e ǫ Ee −R 1 n ∞. 125 Define ¯ ηλ := sup u≤λ ηu. It follows from 123, 125, Lemma 8.4 and Lemma 8.5 that for all λ 0 Λλ ≤ ∞ X n=0 E η λe −αS n ≤ ¯ ηλ ∞ X n=0 PS n ≤ nǫ + ∞ X n=0 ηλe −nαǫ ∞. 126 Thus, Ψ n λ n ≥0 is a Cauchy sequence in [0, λ]. Hence, we conclude the existence of a function Ψ such that Ψλ = lim n →∞ Ψ n λ for every λ ≥ 0. By the dominated convergence theorem, Ψ satis- fies 120b. To check 120a, we prove that Ψ n is Lipschitz continuous with constant one. The induction step follows from Lemma 8.1 Ψ n+1 λ 1 − Ψ n+1 λ 2 ≤ Z ∞ Ψ n λ 1 e −αs − Ψ n λ 2 e −αs µ Q ds ≤ λ 1 − λ 2 Z ∞ e −αs µ Q ds = λ 1 − λ 2 . 127 1142 In order to check 120c, note that since η0+ = 0, it follows from 126 that Λ0+ = 0. Thus, Ψλ λ − 1 ≤ lim sup n →∞ 1 λ Ψ n λ − λ ≤ Λλ −→ 0 as λ → 0, 128 as required. Finally, monotonicity of Ψ n and Ψ n λ ≤ λ for all n ∈ N imply monotonicity of Ψ and Ψλ ≤ λ, respectively. The last claim of 120d, namely Ψ∞ = q, follows from letting λ → ∞ in Ψ λ = H α Ψλ, monotonicity of Ψ and from Lemma 7.1 together with Ψ∞ 0. For the “only if”-part of the lemma, suppose that there exists a solution Ψ of 120. Write ˜ g λ := Ψλ λ for λ 0. Since ˜ g ≥ 0 and ˜g0+ = 1, there exist constants c 1 , c 2 , c 3 0 such that c 2 ≤ ˜gλ ≤ c 3 for all λ ∈ 0, c 1 ]. Using 120b, Ψλ ≥ λc 2 for λ ∈ 0, c 1 ] and Lemma 8.3, we obtain for λ ∈ 0, c 1 ] ˜ g λ = H α Ψλ λ = 1 λ Z ∞ Ψλe −αs µ Q ds − 1 λ ¯ H α Ψλ ≤ Z ∞ ˜ g λe −αs µ Q α ds − 1 λ ¯ H α c 2 ·λ = E˜g λe −αR 1 − c 2 ηc 2 λ. 129 Let t be such that 0 c 4 := µ Q α [0, t ] 1 and write ˜g ∗ λ := sup u ≤λ ˜ gu. Then ˜ g ∗ λ ≤ c 4 ˜ g ∗ λ + 1 − c 4 ˜ g ∗ λe −αt − c 2 ηc 2 λ 130 which we rewrite as ˜ g ∗ λ ≤ ˜g ∗ τλ − c 5 ηc 2 λ where τ := e −αt and c 5 := c 2 1 −c 4 . Iterating this inequality results in ˜ g ∗ λ ≤ ˜g ∗ λτ n+1 − c 5 P n k=0 ηc 2 λτ k for n ≥ 0. Since ˜g ∗ is bounded on 0, c 1 ] this implies that P ∞ k=0 ηc 2 λτ k ∞. Therefore, by Lemma 8.5, the x log x-condition holds.

8.3 Convergence

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52