Integration by parts formula

Theorem 3.4 Quasi-invariance Let ν be the Lebesgue measure on [0, 1]. For each C 2 -isomorphism h ∈ G , the Ferguson-Dirichlet measure Π θ ,ν is quasi-invariant under the transformation ˜ τ h , and dΠ θ ,ν ˜ τ h µ = Y θ h,0 g µ dΠ θ ,ν µ, 3.2 where Y θ h,0 g µ is defined as 3.1, and g µ denotes the cumulative distribution function of µ. Proof. For any bounded measurable function u on P , it can induce a bounded measurable function ¯ u on G by ¯ ug := u ζg. Note that for C 2 -isomorphism h ∈ G , τ −1 h = τ h −1 see Theorem 3.2 for the definition, and ζ ◦ τ h ◦ ζ −1 = ˜ τ h . 3.3 So ˜ τ h is a bijection map and ˜ τ −1 h = ˜ τ h −1 . To see this, noting that g µ = ζ −1 µ, we have for any f ∈ B [0, 1], for any µ ∈ P , Z 1 f x d ζ ◦ τ h g µ = Z 1 f xd τ h g µ = Z 1 ¯hg µ xdg µ x = Z 1 f x d ˜ τ h µ. According to Theorem 3.2, we obtain Z P u µ dΠ θ ,ν ˜ τ h µ = Z P u ˜ τ −1 h µ dΠ θ ,ν µ = Z G ¯ u τ −1 h g dQ θ g = Z G ¯ ugdQ θ τ h g = Z G ¯ ugY θ h,0 g dQ θ g = Z P u µY θ h,0 g µ dΠ θ ,ν µ, which concludes the proof.

3.2 Integration by parts formula

In section 2, we have defined the map e t φ : [0, 1] → [0, 1] and the derivative of a function u : P → R by D φ u µ = lim t→0 1 t u ˜ τ e t φ µ − uµ along φ ∈ H , provided the limit exists. Let Cyl be the set of all functions on P in the form u µ = F 〈 f 1 , µ〉, . . . , 〈 f n , µ〉, 3.4 where F ∈ C 1 R n , f i ∈ C 1 [0, 1] for i = 1, . . . , n and n ∈ N. Let CylG be the set of all functions w : G → R in the form wg = F Z f 1 dg, . . . , Z f n dg 3.5 279 where F ∈ C 1 R n , f i ∈ C 1 [0, 1] and n ∈ N. For a function w : G → R, define its directional derivative along φ ∈ H by D φ wg = d dt t=0 w τ e t φ g = d dt t=0 we t φ ◦ g 3.6 provided the limit exists. Lemma 3.5 i For each w ∈ CylG in the form 3.5, D φ wg exists for each φ ∈ H at every point g ∈ G , and D φ wg = n X i=1 ∂ i F Z ~fdg · Z 1 f i ¯ φ g dg, 3.7 where R ~fdg = R f 1 dg, . . . , R f n dg and ¯ φ g x = R 1 φ ′ r gx + + 1 − rgx − dr for g ∈ G . ii For each u ∈ Cyl on P in the form 3.4, D φ u µ exists for each direction φ ∈ H at every µ ∈ P , and D φ u µ = n X i=1 ∂ i F 〈 ~ f , µ〉 · Z 1 f i x ¯ φ g µ x d µx, 3.8 where 〈 ~ f , µ〉 = 〈 f 1 , µ〉, . . . , 〈 f n , µ〉 and ¯ φ g µ defined as in i. Proof. i By virtue of integration by parts formula on [0, 1], we have Z 1 f i xdgx = f i 1g1 − f i 0g0 − Z 1 f ′ i xgxdx. Using the chain rule for bounded variation function in Vol’pert average form cf. [1, Therem 3.96, Remark 3.98], it holds d dt t=0 Z 1 f i xd e t φ ◦ g x = − Z 1 f ′ i x φgx dx = Z 1 f i x ¯ φ g x dgx by noting that φ0 = φ1 = 0 for φ ∈ H . Therefore, d dt t=0 u τ e t φ ◦ g = d dt t=0 ue t φ ◦ g = d dt t=0 F Z ~fxd e t φ ◦ g x = n X i=1 ∂ i F Z ~fxdgx · Z 1 f i x ¯ φ g xdgx. ii Define ¯ ug = u ◦ ζg, then ¯ u is in the form ¯ ug = F Z f 1 dg, . . . , Z f n dg . 280 Invoking 3.3, d dt t=0 u ˜ τ e t φ µ = d dt t=0 u ζτ e t φ g µ = d dt t=0 ¯ u τ e t φ g µ = n X i=1 ∂ i F Z ~fdg µ · Z 1 f i x ¯ φ g µ xdg µ x = n X i=1 ∂ i F 〈 ~ f , µ〉 · Z 1 f i x ¯ φ g µ xd µx. which concludes the proof. Before stating the integration by parts formula, we recall a result on the derivative of g 7→ Y θ h,0 g appeared in the quasi-invariance formula. According to [24, Lemma 5.7], for φ ∈ C 2 [0, 1] with φ0 = φ1 = 0 and θ ≥ 0, ∂ ∂ t Y θ e t φ ,0 g = X a∈J g hφ ′ ga + + φ ′ ga − 2 − φga + − φga − ga + − ga − i + θ Z 1 φ ′ gx dx − φ ′ 0 + φ ′ 1 2 =: V θ φ g, 3.9 where J g = {x ∈ [0, 1]; gx + 6= gx − }. Theorem 3.6 Integration by parts formula i For each φ ∈ H , u ∈ CylG , it holds that Z G vgD φ ug dQ θ g = Z G ugD ∗ φ vg dQ θ g 3.10 for any v ∈ CylG , where D ∗ φ vg = −D φ vg − V θ φ gvg. 3.11 ii For each φ ∈ H , u ∈ Cyl, it holds that Z P v µD φ u µ dΠ θ µ = Z P u µD ∗ φ v µ dΠ θ µ 3.12 for any v ∈ Cyl, where D ∗ φ v µ = −D φ v µ − V θ φ g µ v µ. 3.13 Proof. We shall only prove i, and ii can be proved by the similar method used in the previous lemma. By the quasi-invariance of Q θ , one has Z G vgD φ ug dQ θ g = lim t→0 1 t Z G vgue t φ ◦ g − ug dQ θ g = lim t→0 1 t Z G ug ve −t φ ◦ gY θ e t φ g − 1 dQ θ g = Z G ug − D φ vg − V θ φ gvg dQ θ g, 281 which concludes i.

3.3 Tangent space and Dirichlet form

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52