81
Lampiran 6 Hasil output spss
Descriptive Statistics
N Minimum
Maximum Mean
Std. Deviation PRESTISE_PEND
56 .1667
.8750 .5914
.1936 STRATA_PEND
56 2
3.1667 2.4687
.2486 UDK
56 2
10 5.27
1.814 UDD
56 2
12 5.25
1.719 LEVERAGE
56 -24.1183
14.8127 1.327
5.0796 Valid N listwise
56
Case Processing Summary
Unweighted Cases
a
N Percent
Selected Cases Included in Analysis
56 90.3
Missing Cases 6
9.7 Total
62 100.0
Unselected Cases .0
Total 62
100.0 a. If weight is in effect, see classification table for the total
number of cases.
Dependent Variable Encoding
Original Value Internal Value
Non Distress Distress
1
Block 0: Beginning Block
Iteration History
a,b,c
Iteration -2 Log likelihood
Coefficients Constant
Step 0 1
67.047 -.857
2 67.006
-.916 3
67.006 -.916
a. Constant is included in the model. b. Initial -2 Log Likelihood: 67.006
Universitas Sumatera Utara
82
c. Estimation terminated at iteration number 3 because parameter estimates changed by less than
.001.
Classification Table
a,b
Observed Predicted
FD Percentage
Correct Non Distress
Distress Step 0
FD Non Distress
40 100.0
Distress 16
.0 Overall Percentage
71.4 a. Constant is included in the model.
b. The cut value is .500
Variables in the Equation
B S.E.
Wald df
Sig. ExpB
Step 0 Constant
-.916 .296
9.595 1
.002 .400
Variables not in the Equation
Score df
Sig. Step 0
Variables PRESTISE_PEND .153
1 .695
STRATA_PEND 4.174
1 .041
UDK 3.715
1 .054
UDD .754
1 .385
Overall Statistics 10.832
4 .029
Universitas Sumatera Utara
83
Block 1: Method = Enter
Iteration History
a,b,c,d
Iteration -2 Log likelihood
Coefficients Constant
PRESTISE _PEND
STRATA_P END
UDK UDD
Step 1 1
56.417 2.764
-2.270 -2.053
.316 .214
2 54.635
4.953 -3.090
-3.312 .438
.307 3
54.524 5.763
-3.318 -3.760
.476 .335
4 54.524
5.834 -3.336
-3.798 .479
.337 5
54.524 5.834
-3.336 -3.798
.479 .337
a. Method: Enter b. Constant is included in the model.
c. Initial -2 Log Likelihood: 67.006 d. Estimation terminated at iteration number 5 because parameter estimates changed by less than
.001.
Omnibus Tests of Model Coefficients
Chi-square df
Sig. Step 1
Step 12.483
4 .014
Block 12.483
4 .014
Model 12.483
4 .014
Model Summary
Step -2 Log likelihood
Cox Snell R Square
Nagelkerke R Square
1 54.524
a
.200 .286
a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.
Hosmer and Lemeshow Test
Step Chi-square
df Sig.
1 11.422
7 .121
Universitas Sumatera Utara
84
Contingency Table for Hosmer and Lemeshow Test
FD = Non Distress FD = Distress
Total Observed
Expected Observed
Expected Step 1
1 6
5.806 .194
6 2
6 5.600
.400 6
3 3
5.339 3
.661 6
4 4
4.089 1
.911 5
5 6
5.424 1
1.576 7
6 6
4.728 1
2.272 7
7 4
3.658 2
2.342 6
8 3
3.006 3
2.994 6
9 2
2.351 5
4.649 7
Classification Table
a
Observed Predicted
FD Percentage
Correct Non Distress
Distress Step 1
FD Non Distress
38 2
95.0 Distress
8 8
50.0 Overall Percentage
82.1 a. The cut value is .500
Variables in the Equation
B S.E.
Wald df
Sig. ExpB
Step 1
a
PRESTISE_PEND -3.336
2.367 1.987
1 .159
.036 STRATA_PEND
-3.798 1.891
4.036 1
.045 .022
UDK .479
.223 4.612
1 .032
1.615 UDD
.337 .265
1.618 1
.203 1.401
Constant 5.834
4.121 2.005
1 .157
341.741 a. Variables entered on step 1: PRESTISE_PEND, STRATA_PEND, UDK, UDD.
Universitas Sumatera Utara
85
Correlation Matrix
Constant PRESTISE_
PEND STRATA_P
END UDK
UDD Step 1
Constant 1.000
.069 -.945
.001 .067
PRESTISE_PEND .069
1.000 -.088
-.534 -.404
STRATA_PEND -.945
-.088 1.000
-.133 -.252
UDK .001
-.534 -.133
1.000 .036
UDD .067
-.404 -.252
.036 1.000
Model Summary
Model R
R Square Adjusted R Square
Std. Error of the Estimate
1 .446
a
.198 .150
.408 a. Predictors: Constant, Ln_LEVPRESTISE, Ln_PRESTISE, Ln_LEVERAGE
ANOVA
a
Model Sum of Squares
df Mean Square
F Sig.
1 Regression
2.058 3
.686 4.127
.011
b
Residual 8.312
50 .166
Total 10.370
53 a. Dependent Variable: Financial Distress
b. Predictors: Constant, Ln_LEVPRESTISE, Ln_PRESTISE, Ln_LEVERAGE
Coefficients
a
Model Unstandardized Coefficients
Standardized Coefficients
t Sig.
B Std. Error
Beta 1
Constant .210
.100 2.096
.041 Ln_LEVERAGE
-.063 .097
-.167 -.646
.521 Ln_PRESTISE
-.189 .130
-.190 -1.453
.153 Ln_LEVPREST
-.393 .179
-.556 -2.194
.033 a. Dependent Variable: Financial Distress
Universitas Sumatera Utara
86
Model Summary
Model R
R Square Adjusted R
Square Std. Error of the
Estimate 1
.485
a
.236 .190
.398 a. Predictors: Constant, Ln_LEVSTRATA, Ln_STRATA, Ln_LEVERAGE
ANOVA
a
Model Sum of Squares
df Mean Square
F Sig.
1 Regression
2.442 3
.814 5.134
.004
b
Residual 7.928
50 .159
Total 10.370
53 a. Dependent Variable: Financial Distress
b. Predictors: Constant, Ln_LEVSTRATA, Ln_STRATA, Ln_LEVERAGE
Coefficients
a
Model Unstandardized Coefficients
Standardized Coefficients
t Sig.
B Std. Error
Beta 1
Constant 1.290
.506 2.547
.014 Ln_LEVERAGE
1.075 .410
2.848 2.621
.012 Ln_STRATA
-1.104 .558
-.249 -1.978
.053 Ln_LEVSTRATA
-1.029 .439
-2.554 -2.346
.023 a. Dependent Variable: Financial Distress
Model Summary
Model R
R Square Adjusted R
Square Std. Error of the
Estimate 1
.291
a
.085 .030
.436 a. Predictors: Constant, Ln_LEVUDK, Ln_UDK, Ln_LEVERAGE
ANOVA
a
Model Sum of Squares
df Mean Square
F Sig.
1 Regression
.881 3
.294 1.546
.214
b
Residual 9.490
50 .190
Total 10.370
53 a. Dependent Variable: Financial Distress
b. Predictors: Constant, Ln_LEVUDK, Ln_UDK, Ln_LEVERAGE
Universitas Sumatera Utara
87
Coefficients
a
Model Unstandardized Coefficients
Standardized Coefficients
t Sig.
B Std. Error
Beta 1
Constant .053
.294 .182
.856 Ln_LEVERAGE
-.035 .312
-.093 -.113
.911 Ln_UDK
.132 .178
.104 .743
.461 Ln_LEVUDK
.085 .199
.352 .428
.670 a. Dependent Variable: Financial Distress
Model Summary
Model R
R Square Adjusted R
Square Std. Error of the
Estimate 1
.280
a
.078 .023
.437 a. Predictors: Constant, Ln_ LEVUDD, Ln_UDD, Ln_LEVERAGE
ANOVA
a
Model Sum of Squares
df Mean Square
F Sig.
1 Regression
.814 3
.271 1.419
.248
b
Residual 9.557
50 .191
Total 10.370
53 a. Dependent Variable: Financial Distress
b. Predictors: Constant, Ln_ LEVUDD, Ln_UDD, Ln_LEVERAGE
Coefficients
a
Model Unstandardized Coefficients
Standardized Coefficients
t Sig.
B Std. Error
Beta 1
Constant .414
.322 1.285
.205 Ln_LEVERAGE
.144 .327
.380 .440
.662 Ln_UDD
-.088 .204
-.067 -.433
.667 Ln_LEVUDD
-.019 .179
-.091 -.103
.918 a. Dependent Variable: Financial Distress
Universitas Sumatera Utara
88
Lampiran 7 Nilai Chi-Square Tabel
Chi-square Distribution Table d.f.
.995 .99 .975 .95 .9
.1 .05 .025 .01
1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63
2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21
3 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34
4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28
5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09
6 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81
7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 8
1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 9
1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 10
2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 11
2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 12
3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 13
3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 14
4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 15
4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 16
5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 17
5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 18
6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 19
6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 20
7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 22
8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 24
9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 26
11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 28
12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 30
13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 32
15.13 16.36 18.29 20.07 22.27 42.58 46.19 49.48 53.49 34
16.50 17.79 19.81 21.66 23.95 44.90 48.60 51.97 56.06 38
19.29 20.69 22.88 24.88 27.34 49.51 53.38 56.90 61.16 42
22.14 23.65 26.00 28.14 30.77 54.09 58.12 61.78 66.21 46
25.04 26.66 29.16 31.44 34.22 58.64 62.83 66.62 71.20 50
27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 55
31.73 33.57 36.40 38.96 42.06 68.80 73.31 77.38 82.29 60
35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 65
39.38 41.44 44.60 47.45 50.88 79.97 84.82 89.18 94.42 70
43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 75
47.21 49.48 52.94 56.05 59.79 91.06 96.22 100.84 106.39 80
51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 85
55.17 57.63 61.39 64.75 68.78 102.08 107.52 112.39 118.24 90
59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 95
63.25 65.90 69.92 73.52 77.82 113.04 118.75 123.86 129.97 100
67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81
Universitas Sumatera Utara
73
Daftar Pustaka
Agoes, Sukrisno dan Cenik Ardana. 2009. Etika Bisnis dan Profesi, Tantangan Membangun Manusia Seutuhnya. Edisi revisi. Jakarta: Salemba Empat.
Ahmad, G.N. 2013. “Analysis of Financial Distress in Indonesia Stock
Exchange”.Society of Interdisciplinary Business Research , Vol 2 Nomor 2.
Almilia, Luciana. 2006. “Prediksi Kondisi Financial Distress Perusahaan Go public Dengan Menggunakan Analisis Multinomial Logit”.Jurnal
Ekonomi dan Bisnis.Volume XII Nomor 1. Altman, E, dan Hotchkiss, E. 2006. Corporate Financial Distress and
Bankcruptcy, Third Edition . New Jersey: John Wiley Sons, Inc.
Aron A. Gottesman dan Matthew R. Morey. 2006. “Does a better education
make for better managers? An empirical examination of CEO educational quality and firm performance”. Lubin school of Business.
Asquith, P., Gertner, R., and Scharfstein. 1991. “Anatomy of Financial Distress: An Examination of Junk-
Bonds Issuers”. National Bureau of Economics Research Working Paper Series, No 3942
BANTEL, K. A., Jackson, S. E. 1989. Top Management and Innovation in Banking: Does the Composition of The Top Team Make A Difference?
Strategic Management Journal 1986-1998. Bathala, C. T., Moon, K. P., Rao, R. P. 1994.
“Managerial ownership, debt policy, and the impact of institutional holdings: An agency perspective
”. Financial Management, 233, 38.
Beaver, W. 1966, Financial Ratios as Predictors of Failures .” Journal of
Accounting Research, Vol. 4 Supplement, 71-102. DAveni, R.,A. 1990,
“Top managerial prestige and organizational bankruptcy
”. Organization Science, 12, 121-142. Emirzon, Joni, 2007. Prinsip-prinsip Good Corporate Governance: Paradigma
baru Dalam Praktik Bisnis Indonesia. Yogyakarta: Genta Press. Erlina, 2011. Metodologi Penelitian. Medan: USU Press.
F. Primada. 2009. “Manfaat Rasio Keuangan dan Corporate Governance Untuk Memprediksi Kondisi Financial Distress pada Perusahaan Manufaktur
Universitas Sumatera Utara
74
yang Terdaftar di BEI”, Skripsi, Fakultas ekonomi, Universitas Sebelas
Maret. Hambrick, D dan Mason. 2003.
“Upper Echelons: The organization as a Reflection of its Top Managers”. The Academy of Management Review,
Volume 9, Issue 2 Apr., 1984, 193-206 .
Hidayat, Muhammad Arif. 2013. “Prediksi Financial Distress Perusahaan Manufaktur di Indonesia Studi Empiris pada Perusahaan Manufaktur
yang Terdaftar di Bursa Efek Indonesia Periode 2008- 2012”. Skripsi,
Fakultas Ekonomika dan Bisnis, Universitas Diponegoro. Irdyana, Brian. 2010. “Analisi Rasio Keuangan CAMEL dan Corporate
Governance dalam memprediksi Financial Distress pada Industri Perbankan di Indonesia”. Skripsi, Fakultas Ekonomi Universitas Sebelas
Maret. Iqbal, Zahid. 2015.
“Financial Distress around Introduction of Hedging in the Oil and Gas Industry”. International Journal of Business, 201.
Jensen dan Meckling. 1976. “Theory of the Firm: Managerial Behavior,
Agency Costs and Ownership Structure”. Journal of Financial Economics, October, 1976, V. 3, No. 4, pp. 305-360.
John, Kose. 2001. “Managing Financial Distress and Valuing Distressed Securities: A survey and a Research Agenda
” Stren School of Business, New York University, New York.
Khaliq, Ahmad, dkk. 2014. “Identifying Financial Distress Firms: A Case
Study of Malaysia’s Government Linked Companies GLC”. International Journal of Economics, Finance and Management.
Kuncoro, Mudrajad. 2003. Metode Riset untuk Bisnis Ekonomi. Bagaimana meneliti dan menulis tesis?. Jakarta: Penerbit Erlangga.
Mariana. 2015. “Analisis Pengaruh Rasio Arus Kas Terhadap Prediksi Kondisi Financial Distress Pada Perusahaan Sektor Industri Dasar dan Kimia yang
t erdaftar di BEI”. Skripsi, Fakultas Ekonomi dan Bisnis, Universitas
Sumatera Utara. Marshall, Eric. “What Determines the Performance of Graduates? Selection
Versus Quality: Evidence From Top Law Schools ”.
Ohlson, J.A. 1980, Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research, Vol. 19, 109-131.
Universitas Sumatera Utara
75
Penny Tamkin, Jim Hillage, Rebecca Willison. “Indicators of Management
Capability: Developing a Framework ”. The Institute for Employment
Studies. Platt dan Platt. 2006. “Understanding Differences between Financial Distress
and Bankruptcy ”. Review of Applied Economics, Vol 2, No, 2, 2006 :
141-157. Platt dan Platt.
“Financial Distress comparison accross 3 global region”. Journal of Risk and Financial Management.
Purnanandam K., Amiyatosh. 2007. “Financial Distress and Corporate Risk Management: Theory Evidence
”. University of Michigan, Stephen M. Ross School of Business.
Raza, Muhammad Wahid dan Shaheed Benazir Bhutto . 2013. “Affect of
Financial Leverage on firm performance. Empirical Evidence on Karashi stock exchange
”. University of Seringal. Oppong,
Seth. 2014. “Upper Echelons Theory Revisited : The Need For A Change from Casual Description to Casual Explanation
”. Sam Jonah School of Business, African University College of Communication.
Soewadji, Jusuf. 2012. Pengantar Metodologi Penelitian. Jakarta: Mitra Wacana Media.
Wardani, Ratna. 2006. “Mekanisme Corporate Governance dalam perusahaan yang mengalami permasalahan keuangan FINANCIALLY DISTRESSED
FIRMS ” Universitas Indonesia. Simposium Nasional Akuntansi 9 Padang.
Weill, Laurent. “Leverage and Corporate Performance: A Frontier Efficiency Analysis
” Université Robert Schuman, Institut d’Etudes Politiques, France. Whitaker, R. B. 1999. The early stages of financial distress. Journal of
Economics and Finance, 23 2, 123-132.
Universitas Sumatera Utara
33
BAB III METODOLOGI PENELITIAN
3.1 Desain Penelitian