TINJAUAN PUSTAKA LAPORAN PRATIKUM KLIMATOLOGY

BAB II TINJAUAN PUSTAKA

2.1 Campbell Stokes Campbell Stokes adalah alat yang digunakan untuk mengukur intensitas dan lama penyinaran matahari. Satuan dari intensitas dan lama penyinaran matahari adalah persen. Campbell Stokes dilengkapi dengan kartu khusus. Kartu ini adalah kartu yang berperan sebagai pencatat data. Kartu Campbell Stokes ini dipasang dibawah lensa pada alat, kemudian diletakkan di tempat terbuka. Pencatat waktu pada kartu akan mencatat bekas bakaran kartu. Bagian yang hangus itulah yang menunjukkan intensitas sinar matahari selama satu hari. Bekas bagian hangus yang berwarna coklat, dicocokkan oleh satuan waktu dan lamanya penyinaran. Lamanya penyinaran yang diukur adalah penyinaran terus-menerus dan penyinaran yang tertutup awan Anonim, 2008. Secara khusus Campbell Stokes dipergunakan untuk mengukur waktu dan lama matahari bersinar dalam satu hari dimana alat tersebut dipasang. Campbell Stokes terdiri dari beberapa bagian yaitu Bola kaca pejal umumnya berdiameter 96 mm. Plat logam berbentuk mangkuk, sisi bagian dalamnya bercelah-celah sebagai tempat kartupencatat dan penyanggah tempat bola kaca pejal dilengkapi skala dalam derajat yang sesuai dengan derajat lintang bumi. Bagian Pendiri stand, Bagian dasar terbuat dari logam yang dapat di-leveling. Kertas pias terdiri dari 3 tiga jenis menurut letak matahari. Prinsip kerja Sinar matahari yang datang menuju permukaan bumi, khususnya yang tepat jatuh pada sekeliling permukaan bola kaca pejal akan dipokuskan ke atas permukaan kertas pias yang telah dimasukkan ke celah mangkuk dan meninggalkan jejak bakar sesuai posisi matahari saat itu. Jumlah kumulatif dari jejak titik bakar inilah yang disebut sebagai lamanya matahari bersinar dalam satu hari satuan jammenit Anonim, 2009. 2.2 Termometer Termometer adalah alat untuk mengukur suhu. Thermometer analog bisa juga disebut sebagai thermometer manual, karena cara pembacaannya masih manual. Penggunaan air raksa sebagai bahan utama thermometer karena koefisien muai air raksa terbilang konstan sehingga perubahan volume akibat kenaikan atau penurunan suhu 3 hampir selalu sama. Namun ada juga beberapa termometer keluarga mengandung alkohol dengan tambahan pewarna merah. Termometer ini lebih aman dan mudah untuk dibaca. Jenis khusus termometer air raksa, disebut termometer maksimun, bekerja dengan adanya katup pada leher tabung dekat bohlam. Saat suhu naik, air raksa didorong ke atas melalui katup oleh gaya pemuaian. Saat suhu turun air raksa tertahan pada katup dan tidak dapat kembali ke bohlam membuat air raksa tetap d idalam tabung. Pembaca kemudian dapat membaca temperatur maksimun selama waktu yang telah ditentukan. Untuk mengembalikan fungsinya, termometer harus diayunkan dengan keras. Termometer ini mirip desain termometer medis. Air raksa akan membeku pada suhu -38.83 °C -37.89 °F dan hanya dapat digunakan pada suhu diatasnya. Air raksa, tidak seperti air, tidak mengembang saat membeku sehingga tidak memecahkan tabung kaca, membuatnya sulit diamati ketika membeku. Jika termometer mengandung nitrogen, gas mungkin mengalir turun ke dalam kolom dan terjebak disana ketika temperatur naik. Jika ini terjadi termometer tidak dapat digunakan hingga kembali ke kondisi awal. Untuk menghindarinya, termometer air raksa sebaiknya dimasukkan ke dalam tempat yang hangat saat temperature di bawah -37 °C -34.6 °F. Pada area di mana suhu maksimum tidak diharapkan naik di atas -38.83 ° C -37.89 °F termometer yang memakai campuran air raksa dan thallium mungkin bisa dipakai. Termometer ini mempunyai titik beku of -61.1 °C -78 °F Shafiyyah, 2009. Termometer adalah alat yang digunakan untuk mengukur temperatur. Termometer harus dipasang secara mendatar di lapangan terbuka. Satuan meteorologi dari temperatur adalah derajat celcius oC, Reamur oR dan Fahrenheit oF. Umumnya termometer diisi air raksa atau alkohol. Pemasangan dilakukan dengan menggunakan alas kayu atau besi sebagai penahan. Pada siang hari, termometer harus diikat untuk menghindari sinar matahri langsung. Pada petang hari, termometer dipasang kembali. Untuk menghindari cahaya matahari langsung, termometer dapat juga diberi pelindung atau dengan menempelkannya di dinding bangunan. Termometer bekerja dengan cara yang sederhana. Bila udara panas, maka air raksa dalam termometer akan mengembang. Temperatur pada termometer diukur dengan skala temperatur yang berimpit dengan letak permukaan air raksa Anonim, 2008. Psikrometer standar adalah alat pengukur kelembapan udara terdiri dari dua termometer bola basah dan bola kering. Pembasah termometer bola basah harus dijaga agar jangan sampai kotor. Gantilah kain pembasah bila kotor atau daya airnya telah 4 berkurang. Dua minggu atau sebulan sekali perlu diganti, tergantung cepatnya kotor. Musim kemarau pembasah cepat sekali kotor oleh debu. Air pembasah harus bersih dan jernih. Pakailah air bebas ion atau aquades. Air banyak mengandung mineral akan mengakibatkan terjadinya endapan garam pada termometer bola basah dan mengganggu pengukuran. Waktu pembacaan terlebih dahulu bacalah termometer bola kering kemudian termometer bola basah. Suhu udara yang ditunjukkan termometer bola kering lebih mudah berubah daripada termometer bola basah. Semua alat pengukur kelembapan udara ditaruh dalam sangkar cuaca terlindung dari radiasi surya langsung atau radiasi bumi serta Badai, 2009. Suhu seringkali juga diartikan sebagai energi kinetis rata-rata suatu benda. Satuan untuk suhu adalah derajat suhu yang umumnya dinyatakan dengan satuan derajat Celsius °C disamping tiga sistem skala lain, yaitu satuan Fahrenheit F, satuan Reamur R, dan satuan Kelvin K. Alat yang digunakan untuk mengukur temperatur dikenal dengan nama termometer. Berdasarkan prinsip fisikanya, termometer dapat digolongkan ke dalam empat macam termometer berdasarkan prinsip pemuaian, termometer berdasarkan prinsip arus listrik, thermometer berdasarkan perubahan tekanan dan volume gas, dan termometer berdasarkan prinsip perubahan panjang gelombang cahaya yang dipancarkan oleh suatu permukaan bersuhu tinggi. Sophiadwiratna, 2010. 2.3 Penangkar Hujan Penangakar hujan yang baku digunakan di Indonesia adalah tipe observatorium semua alat penangkar hujan yang beragam bentuknya atau yang otomatis dibandingkan dengan alat penangkar hujan otomatis OBS. Penangkar hujan OBS adalah manual. Alat penakar hujan di bagi dua yaitu pertama, alat penakar curah hujan otomatis dari type Hellman Obrometer dan yang kedua alat penakar curah hujan biasa tidak otomatis dari Ombrometer type Observatorium. Curah hujan sering disebut dengan presipitasi. Presipitasi adalah air dalam bentuk cair atau padat yang mengendap ke bumi yang selalu didahului oleh proses konde yang tertampung diukur dengan gelas ukur yang telah dikonversi dalam satuan tinggi atau gelas ukur yang kemudian dibagi sepuluh karena luas penampangnya adalah 100 cm sehingga dihasilkan satuan mm. Pengamatan dilakukan sekali dalam 24 jam yaitu pada pagi hari. Hujan yang diukur pada pagi hari adalah hujan kemarin bukan hari ini Badai, 2009. 5 Penakar hujan OBS adalah manual. Jumlah air hujan yang tertampung diukur dengan gelas ukur yang telah dikonversi dalam satuan tinggi. Pengamatan dilakukan sekali dalam 24 jam yaitu pada pagi hari. Hujan yang diukur pada pagi itu adalah data hujan hari kemarin Anonim, 2009. Penakar hujan jenis Hellman termasuk penakar hujan yang dapat mencatat sendiri. Jika hujan turun, air hujan masuk melalui corong, kemudian terkumpul dalam tabung tempat pelampung. Air ini menyebabkan pelampung serta tangkainya terangkat naik keatas. Pada tangkai pelampung terdapat tongkat pena yang gerakkannya selalu mengikuti tangkai pelampung. Gerakkan pena dicatat pada pias yang ditakkan digulung pada silinder jam yang dapat berputar dengan bantuan tenaga per. Jika air dalam tabung hampir penuh, pena akan mencapai tempat teratas pada pias. Setelah air mencapai atau melewati puncak lengkungan selang gelas, air dalam tabung akan keluar sampai ketinggian ujung selang dalam tabung dan tangki pelampung dan pena turun dan pencatatannya pada pias merupakan garis lurus vertikal. Dengan demikian jumlah curah hujan dapat dhitung ditentukan dengan menghitung jumlah garis-garis vertikal yang terdapat pada pias Anonim, 2008. 2.4 HVAcid Rain Sampler Mempunyai prinsip kerja dimana udara yang mengandung partikel debu di hisap mengalir melalui kertas filter dengan menggunakan motor putaran kecepatan tinggi. Dimana debu menempel pada kertas filter yang nantinya akan diukur konsentrasinya dengan cara kertas filter tersebut ditimbang sebelum dan sesudah sampling disamping itu juga dicatat flowrate dan waktu lamanya sampling sehingga didapat konsentrasi debu tersebut Anonim, 2009. 2.5 Panci Penguapan Penguapan ialah proses perubahan air menjadi uap air. Proses ini dapat terjadi pada setiap permukaan benda pada temperatur diatas 0 0K. Faktor-faktor yang mempengaruhi penguapan ialah temperatur benda dan udara, kecepatan angin, kelembaban udara, intensitas radiasi matahari dan tekanan udara, jenis permukaan benda serta unsur-unsur yang terkandung didalamnya. Dalam meteorologi dikenal dua istilah untuk penguapan yaitu evaporasi dan evapotranspirasi. Untuk Evaporimeter panci terbuka 6 digunakan untuk mengukur evaporasi. Makin luas permukaan panci, makin representatif atau makin mendekati penguapan yang sebenarnya terjadi pada permukaan danau, waduk, sungai dan lain-lainnya. Pengukuran evaporasi dengan menggunakan evaporimeter memerlukan perlengkapan sebagai berikut Panci Bundar Besar, Hook Gauge yaitu suatu alat untuk mengukur perubahan tinggi permukaan air dalam panci. Hook Gauge mempunyai bermacam-macam bentuk, sehingga cara pembacaannya berlainan, Still Well ialah bejana terbuat dari logam kuningan yang berbentuk silinder dan mempunyai 3 buah kaki, Thermometer air dan thermometer maximum minimum, Cup Counter Anemometer, Pondasi atau Alas, Penakar hujan biasa Anonim, 2008. 2.6 Anemometer Anemometer adalah alat yang digunakan untuk mengukur arah dan kecepatan angin. Satuan meteorologi dari kecepatan angin adalah Knots Skala Beaufort. Sedangkan satuan meteorologi dari arah angin adalah 0o – 360o dan arah mata angin. Anemometer harus ditempatkandi daerah terbuka. Pada saat tertiup angin, baling-baling yang terdapat pada anemometer akan bergerak sesuai arah angin. Di dalamanemometer terdapat alat pencacah yang akan menghitung kecepatan angin. Hasil yang diperoleh alat pencacah dicatat, kemudian dicocokkan dengan Skala Beaufort. Selain menggunakan anemometer, untuk mengetahui arah mata angin, kita dapat menggunakan bendera angin. Anak panah pada baling-baling bendera angin akan menunjukkan ke arahmana angin bertiup. Cara lainnya dengan membuat kantong angin dan diletakkan di tempat terbuka Anonim, 2008. 2.7 AWS Automatic Weather Station AWS Automatic Weather Stations merupakan suatu peralatan atau sistem terpadu yang di disain untuk pengumpulan data cuaca secara otomatis serta di proses agar pengamatan menjadi lebih mudah. AWS ini umumnya dilengkapi dengan sensor, RTU Remote Terminal Unit, Komputer, unit LED Display dan bagian-bagian lainnya. Sensor-sensor yang digunakan meliputi sensor temperatur, arah dan kecepatan angin, kelembaban, presipitasi, tekanan udara, pyranometer, net radiometer. RTU Remote Terminal Unit terdiri atas data logger dan backup power, yang berfungsi sebagai terminal pengumpulan data cuaca dari sensor tersebut dan di transmisikan ke unit pengumpulan data pada komputer. Masing-masing parameter cuaca dapat ditampilkan melalui LED 7 Light Emiting Diode Display, sehingga para pengguna dapat mengamati cuaca saat itu present weather dengan mudah. Secara umum komponen AWS di bagi beberapa bagian utama yaitu Sensor, Wind speed, Wind direction, Humidity, Temperature, Solar radiation, Air Pressure, Rain gauge, Data Logger, Komputer sistem perekam dan sistem monitor, Display optional, Tiang untuk dudukan sensor dan data logger, Penangkal petir. Spesifikasi teknis dari masing-masing komponen biasanya ditentukan, sesuai dengan dimana AWS tersebut akan dipasang Anonim, 2008. 2.8 Analisis data meteorologi Agar maksud data analisis data meteorologi lebih bermanfaat, maka dilakukan pengorganisasian dan analisis data dari seluruh jaringan pengamat cuaca. Misalnya, analisis data berdasarkan time series pengamatan jangka panjang, penafsiran terhadap suatu parameter yang sukar dilakukan dengan cara didekati dengan parameter yang mempunyai hubungan dan berdasarkan rumus antara parameter tersebut Wisnusubroto, 1999. Dengan berdasarkan kepada metode statistika maka terdapat teknik menganalisis data untuk sebuah persoalan yang menyangkut dua peubah atau lebih yang ada atau diduga ada dalam suatu pertautan tertentu yang disebut teknik analisis regresi dan analisis korelasi. Regresi multipel adalah regresi yang melibatkan sebuah peubah tak bebas dan dua atau lebih peubah bebas. Yang kemudian disusun oleh analisis korelasinya dalam bentuk korelasi multipel. Regresi merupakan bentuk hubungan antara peubah respon Y dan peubah prediktor X. Manfaat dari analisa regresi adalah mengetahui peramalan rata-rata peubah respon berdasarkan peubah prediktor, perkiraan rerata untuk peubah respon untuk setiap perubahan satuan prediktor termasuk selang taksiran rata-rata dan individual untuk peubah respon. Selain itu, jika hubungan antar peubah respon dengan peubah prediktor memang ada maka untuk mengetahui ada atau tidaknya kontribusi peubah prediktor terhadap peubah respon terdapat pada bagian korelasi r, harga r berkisar pada nilai -1 hingga 1. Koefisien korelasi negatif memiliki hubungan dengan koefisien arah negatif. Sedangkan korelasi positif memiliki hubungan dengan koefisien arah positif. Dan jika korelasi 8 mempunyai nilai nol maka koefisien arah nol atau dapat dikatakan jika antara peubah respon dan peubah prediktor tidak memiliki hubungan. Sudjana, 1991. Probabilitas dan prakiraan data curah hujan lebih praktis mendapatkan perhatian, karena hal ini dapat mengubah hasil panen tanaman, permintaan evaporasi dan tipe tanah. Pada faktanya periode dengan kalkulasinya dibutuhkan untuk mengubah nilai kritik dari curah hujan dalam suatu periode. Permasalahan yang ada seperti ketidaktepatan dalam perubahan kalkulasi dengan jangka waktu yang pendek dan curah hujan yang rendah Jackson, 1984. Jumlah curah hujan tidak menunjukkan informasi yang dibutuhkan untuk mengukur pengikisan dari badai hujan. Kekuatan yang digunakan di permukaan tanah dengan setiap tetesan air hujan dapat diperlihatkan dengan kekuatan yang meliputi badai hujan. Untuk menghitung nilai ini, informasi yang harus tersedia adalah besar dan lamanya hujan badai, ukuran dan kecepatan pada tiap tetesan hujan dan penyaluran ukuran tiap tetes Linder,1981. Cara memprediksi kemungkinan curah hujan yaitu dengan melakukan banyak penyelidikan mengenai distribusi curah hujan yang dapat diklasifikasikan sebagai berikut Sosrodarsono, 1978: 1. Cara distribusi normal Cara ini digunakan untuk menyelesaikan atau menghitung distribusi normal yang didapat dengan merubah variabel distribusi asimetris X ke dalam logaritma atau ke dalam akar pangkat n. 2. Cara kurva asimetris Cara ini adalah cara yang langsung menggunakan kurva asimetris kemungkinan kerapatan. Cara-cara yang digunakan adalah jenis distribusi eksponensial dan distribusi harga ekstrim. 3. Cara yang menggunakan kombinasi cara 1 dan cara 2 9 Sedangkan Linder 1981, mengungkapkan bahwa dalam daerah musim hujan, hujan harian biasanya jatuh selama satu badai, kemudian hal ini dapat dianggap bahwa curah hujan bulanan dibagi dengan jumlah hujan harian tiap bulan menghasilkan pengukuran yang layak dari rata-rata jumlah hujan yang turun selama satu badai pada bagian bulan tersebut. 10

BAB III METODOLOGI