General case We also fix a

Example 2. Cox process The process C with càdlàg trajectories such that PC t − C s = k | F ∞ ∨ F C s = e − R t s λ u du R t s λ u du k k 2.2 for some F–adapted process λ such that λ ≥ 0, R t λ s ds ∞ for all t ≥ 0 we call a Cox process. This definition implies that PC t − C s = k | F ∞ ∨ F C s = PC t − C s = k | F ∞ , so the increments and the past i.e. F C s are conditionally independent given F ∞ . Therefore for j ≥ i, PC t = j | F ∞ ∨ F C s ✶{ C s =i } = ✶{ C s =i }PC t − C s = j − i | F ∞ ∨ F C s = ✶{ C s =i }e − R t s λ u du R t s λ u du j−i j − i . Thus p i, j s, t =    R t s λ u du j−i j−i e − R t s λ u du for j ≥ i, for j i, satisfy conditions 1 and 2 of Definition 2.1. A Cox process C is therefore an F–DS Markov chain with K = N. Usually in a definition of Cox process there is one more assumption on intensity, namely R ∞ λ s ds = ∞ a.s. Under this assumption C has properties similar to Poisson process and is called conditional Poisson process or doubly stochastic Poisson process. So our definition of Cox process is a slight generalization of a classical one. Example 3. Time changed discrete Markov chain Assume that ¯ C is a discrete time Markov chain with values in K = {1, . . . , K}, N is a Cox process and the processes ¯ C k k≥0 and N t t≥0 are inde- pendent and conditionally independent given F ∞ . Then the process C t := ¯ C N t is an F–DS Markov chain see Jakubowski and Niew˛ egłowski [11, Theorem 7 and 9]. Example 4. Truncated Cox process Simple calculations give us that the process C t := min N t , K , where N is a Cox process and K ∈ N, is an F–DS Markov chain with state space K = {0, . . . , K}. 3 Basic properties

3.1 General case

In this subsection we consider the case of an arbitrary countable state space K . We study basic properties of transition matrices and martingale invariance property of F with respect to F ∨ F C . Moreover we prove that the class of F-DS Markov chains is a subclass of F conditional F ∨ F C Markov chains. For the rest of the paper we assume that C = i for some i ∈ K . We start the investigation of F–DS Markov chains from the very useful lemma describing conditional finite–dimensional distributions of C, which is a counterpart of the well known result for Markov chains. 1746 Lemma 3.1. If C is an F–DS Markov chain, then PC u 1 = i 1 , . . . C u n = i n | F ∞ ∨ F C u ✶ ¦ C u0 =i © 3.1 = ✶ ¦ C u0 =i © p i ,i 1 u , u 1 n−1 Y k=1 p i k ,i k+1 u k , u k+1 for arbitrary 0 ≤ u ≤ . . . ≤ u n and i , . . . , i n ∈ K n+1 . Proof. The proof is by induction on n. For n = 1 the above formula obviously holds. Assume that it holds for n, arbitrary 0 ≤ u ≤ . . . ≤ u n and i , . . . , i n ∈ K n+1 . We will prove it for n + 1 and arbitrary 0 ≤ u ≤ . . . ≤ u n ≤ u n+1 , i , . . . , i n , i n+1 ∈ K n+2 . Because E ✶ n C u1 =i 1 ,...C un+1 =i n+1 o | F ∞ ∨ F C u ✶ ¦ C u0 =i © = E E ✶ n C u2 =i 2 ,...,C un+1 =i n+1 o |F ∞ ∨F C u 1 ✶ ¦ C u1 =i 1 © |F ∞ ∨F C u ✶ ¦ C u0 =i © , by the induction assumption applied to u 1 ≤ . . . ≤ u n+1 and i 1 , . . . , i n+1 ∈ K n+1 we know that the left hand side of 3.1 is equal to E ✶ ¦ C u1 =i 1 © p i 1 ,i 2 u 1 , u 2 n Y k=2 p i k ,i k+1 u k , u k+1 | F ∞ ∨ F C u ✶ ¦ C u0 =i © = I. Using F ∞ –measurability of family of transition probabilities Ps, t 0≤s≤t ∞ , and the definition of F –DS Markov chain, we obtain I = E  ✶ ¦ C u1 =i 1 © |F ∞ ∨ F C u ‹ ✶ ¦ C u0 =i © p i 1 ,i 2 u 1 , u 2 n Y k=2 p i k ,i k+1 u k , u k+1 = ✶ ¦ C u0 =i © p i ,i 1 u , u 1 p i 1 ,i 2 u 1 , u 2 n Y k=2 p i k ,i k+1 u k , u k+1 = ✶ ¦ C u0 =i © p i ,i 1 u , u 1 n Y k=1 p i k ,i k+1 u k , u k+1 and this completes the proof. Remark 3.2. Of course, if 3.1 holds, then condition 2 of Definition 2.1 of F–DS Markov chain is satisfied. Therefore 3.1 can be viewed as an alternative to equality 2.1. As a consequence of our assumption that C = i and Lemma 3.1 we obtain Proposition 3.3. If C is an F–DS Markov chain, then for arbitrary 0 ≤ u 1 ≤ . . . ≤ u n ≤ t and i 1 , . . . , i n ∈ K n we have PC u 1 = i 1 , . . . C u n = i n | F ∞ = p i ,i 1 0, u 1 n−1 Y k=0 p i k ,i k+1 u k , u k+1 , 3.2 and PC u 1 = i 1 , . . . C u n = i n | F ∞ = PC u 1 = i 1 , . . . C u n = i n | F t . 3.3 1747 The following hypothesis is standard for many applications e.g., in credit risk theory. HYPOTHESIS H: For every bounded F ∞ –measurable random variable Y and for each t ≥ 0 we have EY | F t ∨ F C t = EY | F t . It is well known that hypothesis H for the filtrations F and F C is equivalent to the martingale invariance property of the filtration F with respect to F ∨ F C see Brémaud and Yor [4] or Bielecki and Rutkowski [3, Lemma 6.1.1, page 167] i.e. any F martingale is an F ∨ F C martingale. From results in [4] one can deduce that hypothesis H implies 3.3. So, by Proposition 3.3, we can expect that for a class of F-DS Markov chains hypothesis H is satisfied. Indeed, Proposition 3.4. If C is an F–DS Markov chain then hypothesis H holds. Proof. According to [11, Lemma 2] we know that hypothesis H is equivalent to 3.3. This and Proposition 3.3 complete the proof. Now, we will show that each F–DS Markov chain is a conditional Markov chain see [3, page 340] for a precise definition. For an example of a process which is an F conditional F ∨ F C Markov chain and is not an F–DS Markov chain we refer to Section 3 of Becherer and Schweizer [2]. Proposition 3.5. Assume that C is an F–DS Markov chain. Then C is an F conditional F ∨ F C Markov chain. Proof. We have to check that for s ≤ t, PC t = i | F s ∨ F C s = PC t = i | F s ∨ σC s . By the definition of an F–DS Markov chain, PC t = i | F s ∨ F C s = EE ✶{ C t =i } | F ∞ ∨ F C s | F s ∨ F C s = E X j∈K ✶{ C s = j } p j,i s, t|F s ∨ F C s = X j∈K ✶{ C s = j }E € p j,i s, t|F s ∨ F C s Š = I. But I = X j∈K ✶{ C s = j }E € p j,i s, t | F s Š since hypothesis H holds Proposition 3.4, and this ends the proof. Now we define processes H i , which play a crucial role in our characterization of the class of F–DS Markov chains: H i t := ✶{ C t =i } 3.4 for i ∈ K . The process H i t tells us whether at time t the process C is in state i or not. Let H t := H α t ⊤ α∈K , where ⊤ denotes transposition. We can express condition 2.1 in the definition of an F–DS Markov chain, for t ≤ u, in the form H i t EH j u | F ∞ ∨ F C t = H i t p i, j t, u, 1748 or equivalently EH j u | F ∞ ∨ F C t = X i∈K H i t p i, j t, u and so 2.1 is equivalent to E € H u | F ∞ ∨ F C t Š = Pt, u ⊤ H t . 3.5 The next theorem states that the family of matrices Ps, t = [p i, j s, t] i, j∈K satisfies the Chapman- Kolmogorov equations. Theorem 3.6. Let C be an F–DS Markov chain with transition matrices Ps, t. Then for any u ≥ t ≥ s we have Ps, u = Ps, tPt, u a.s., 3.6 so on the set C s = i we have p i, j s, u = X k∈K p i,k s, tp k, j t, u. Proof. It is enough to prove that 3.6 holds on each set C s = i , i ∈ K . So we have to prove that H ⊤ s Ps, u = H ⊤ s Ps, tPt, u. By the chain rule for conditional expectation, equality 3.5 and the fact that Pt, u is F ∞ – measurable it follows that for s ≤ t ≤ u, Ps, u ⊤ H s = E € H u | F ∞ ∨ F C s Š = E € E € H u | F ∞ ∨ F C t Š | F ∞ ∨ F C s Š = E € Pt, u ⊤ H t | F ∞ ∨ F C s Š = Pt, u ⊤ E € H t | F ∞ ∨ F C s Š = Pt, u ⊤ Ps, t ⊤ H s = Ps, tPt, u ⊤ H s , and this completes the proof.

3.2 The case of a finite state space

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52