Persamaan Kedua Persamaan Ketiga

Obs Ln X1 Ln Y Fit SE Fit Residual St Resid 26 2,62 2,36847 2,00310 0,02016 0,36537 3,64R 110 3,32 1,67624 1,47817 0,02985 0,19807 2,03R 120 2,20 2,05365 2,25877 0,02788 -0,20512 -2,08R 127 3,03 1,94250 2,14379 0,02274 -0,20129 -2,02R 128 2,97 1,46538 1,56347 0,04794 -0,09809 -1,09 X 132 3,22 1,73838 2,03628 0,02024 -0,29789 -2,97R 133 2,57 1,86332 2,08370 0,01080 -0,22038 -2,17R 139 2,21 1,90472 2,15153 0,01983 -0,24682 -2,46R 140 2,56 1,81757 2,05398 0,01981 -0,23641 -2,36R 141 2,53 1,76641 1,98761 0,01671 -0,22120 -2,19R R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.

b. Persamaan Kedua

The regression equation is Ln Y = 1,34 - 0,0461 Ln X1 + 0,0650 Ln X2 + 0,792 Ln X3 - 0,152 Ln X4 - 0,0912 Ln X5 Predictor Coef SE Coef T P Constant 1,3411 0,3033 4,42 0,000 Ln X1 -0,04610 0,02537 -1,82 0,071 Ln X2 0,06499 0,04283 1,52 0,131 Ln X3 0,79177 0,05097 15,53 0,000 Ln X4 -0,15175 0,08350 -1,82 0,071 Ln X5 -0,09116 0,07130 -1,28 0,203 S = 0,101914 R-Sq = 73,2 R-Sqadj = 72,2 Lampiran 4. Lanjutan Analysis of Variance Source DF SS MS F P Regression 5 4,05111 0,81022 78,01 0,000 Residual Error 143 1,48527 0,01039 Total 148 5,53638 Source DF Seq SS Ln X1 1 0,72598 Ln X2 1 0,81050 Ln X3 1 2,46948 Ln X4 1 0,02818 Ln X5 1 0,01698 Unusual Observations Obs Ln X1 Ln Y Fit SE Fit Residual St Resid 26 2,62 2,36847 2,00118 0,01797 0,36729 3,66R 110 3,32 1,67624 1,47612 0,02816 0,20012 2,04R 120 2,20 2,05365 2,25930 0,02767 -0,20565 -2,10R 128 2,97 1,46538 1,56359 0,04777 -0,09820 -1,09 X 132 3,22 1,73838 2,03683 0,02001 -0,29845 -2,99R 133 2,57 1,86332 2,08395 0,01070 -0,22062 -2,18R 139 2,21 1,90472 2,15179 0,01973 -0,24708 -2,47R 140 2,56 1,81757 2,05324 0,01944 -0,23568 -2,36R 141 2,53 1,76641 1,98919 0,01492 -0,22278 -2,21R Universitas Sumatera Utara R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.

c. Persamaan Ketiga

The regression equation is Ln Y = 1,24 - 0,0480 Ln X1 + 0,0678 Ln X2 + 0,789 Ln X3 - 0,136 Ln X4 Predictor Coef SE Coef T P Constant 1,2398 0,2934 4,23 0,000 Ln X1 -0,04797 0,02538 -1,89 0,061 Ln X2 0,06780 0,04287 1,58 0,116 Ln X3 0,78878 0,05103 15,46 0,000 Ln X4 -0,13602 0,08277 -1,64 0,102 S = 0,102139 R-Sq = 72,9 R-Sqadj = 72,1 Analysis of Variance Source DF SS MS F P Regression 4 4,0341 1,0085 96,67 0,000 Residual Error 144 1,5023 0,0104 Total 148 5,5364 Source DF Seq SS Ln X1 1 0,7260 Ln X2 1 0,8105 Ln X3 1 2,4695 Ln X4 1 0,0282 Lampiran 4. Lanjutan Unusual Observations Obs Ln X1 Ln Y Fit SE Fit Residual St Resid 26 2,62 2,36847 1,98710 0,01423 0,38137 3,77R 110 3,32 1,67624 1,47859 0,02815 0,19765 2,01R 114 2,86 1,70842 1,51278 0,02970 0,19564 2,00R 120 2,20 2,05365 2,26920 0,02663 -0,21554 -2,19R 128 2,97 1,46538 1,55304 0,04716 -0,08766 -0,97 X 132 3,22 1,73838 2,04939 0,01747 -0,31101 -3,09R 133 2,57 1,86332 2,08658 0,01052 -0,22326 -2,20R 134 3,14 1,90472 2,11329 0,01901 -0,20857 -2,08R 139 2,21 1,90472 2,16625 0,01620 -0,26153 -2,59R 140 2,56 1,81757 2,06643 0,01651 -0,24886 -2,47R 141 2,53 1,76641 1,99133 0,01485 -0,22492 -2,23R R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.

d. Persamaan Keempat