Obs  Ln X1    Ln  Y      Fit   SE Fit  Residual  St Resid 26   2,62  2,36847  2,00310  0,02016   0,36537      3,64R
110   3,32  1,67624  1,47817  0,02985   0,19807      2,03R 120   2,20  2,05365  2,25877  0,02788  -0,20512     -2,08R
127   3,03  1,94250  2,14379  0,02274  -0,20129     -2,02R 128   2,97  1,46538  1,56347  0,04794  -0,09809     -1,09 X
132   3,22  1,73838  2,03628  0,02024  -0,29789     -2,97R 133   2,57  1,86332  2,08370  0,01080  -0,22038     -2,17R
139   2,21  1,90472  2,15153  0,01983  -0,24682     -2,46R 140   2,56  1,81757  2,05398  0,01981  -0,23641     -2,36R
141   2,53  1,76641  1,98761  0,01671  -0,22120     -2,19R R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
b. Persamaan Kedua
The regression equation is Ln  Y = 1,34 - 0,0461 Ln X1 + 0,0650 Ln X2 + 0,792 Ln X3 - 0,152 Ln X4
- 0,0912 Ln X5 Predictor      Coef  SE Coef      T      P
Constant     1,3411   0,3033   4,42  0,000 Ln X1      -0,04610  0,02537  -1,82  0,071
Ln X2       0,06499  0,04283   1,52  0,131 Ln X3       0,79177  0,05097  15,53  0,000
Ln X4      -0,15175  0,08350  -1,82  0,071 Ln X5      -0,09116  0,07130  -1,28  0,203
S = 0,101914   R-Sq = 73,2   R-Sqadj = 72,2
Lampiran 4. Lanjutan
Analysis of Variance Source           DF       SS       MS      F      P
Regression        5  4,05111  0,81022  78,01  0,000 Residual Error  143  1,48527  0,01039
Total           148  5,53638 Source  DF   Seq SS
Ln X1    1  0,72598 Ln X2    1  0,81050
Ln X3    1  2,46948 Ln X4    1  0,02818
Ln X5    1  0,01698 Unusual Observations
Obs  Ln X1    Ln  Y      Fit   SE Fit  Residual  St Resid 26   2,62  2,36847  2,00118  0,01797   0,36729      3,66R
110   3,32  1,67624  1,47612  0,02816   0,20012      2,04R 120   2,20  2,05365  2,25930  0,02767  -0,20565     -2,10R
128   2,97  1,46538  1,56359  0,04777  -0,09820     -1,09 X 132   3,22  1,73838  2,03683  0,02001  -0,29845     -2,99R
133   2,57  1,86332  2,08395  0,01070  -0,22062     -2,18R 139   2,21  1,90472  2,15179  0,01973  -0,24708     -2,47R
140   2,56  1,81757  2,05324  0,01944  -0,23568     -2,36R 141   2,53  1,76641  1,98919  0,01492  -0,22278     -2,21R
Universitas Sumatera Utara
R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.
c. Persamaan Ketiga
The regression equation is Ln  Y = 1,24 - 0,0480 Ln X1 + 0,0678 Ln X2 + 0,789 Ln X3 - 0,136 Ln X4
Predictor      Coef  SE Coef      T      P Constant     1,2398   0,2934   4,23  0,000
Ln X1      -0,04797  0,02538  -1,89  0,061 Ln X2       0,06780  0,04287   1,58  0,116
Ln X3       0,78878  0,05103  15,46  0,000 Ln X4      -0,13602  0,08277  -1,64  0,102
S = 0,102139   R-Sq = 72,9   R-Sqadj = 72,1 Analysis of Variance
Source           DF      SS      MS      F      P Regression        4  4,0341  1,0085  96,67  0,000
Residual Error  144  1,5023  0,0104 Total           148  5,5364
Source  DF  Seq SS Ln X1    1  0,7260
Ln X2    1  0,8105 Ln X3    1  2,4695
Ln X4    1  0,0282
Lampiran 4. Lanjutan
Unusual Observations Obs  Ln X1    Ln  Y      Fit   SE Fit  Residual  St Resid
26   2,62  2,36847  1,98710  0,01423   0,38137      3,77R 110   3,32  1,67624  1,47859  0,02815   0,19765      2,01R
114   2,86  1,70842  1,51278  0,02970   0,19564      2,00R 120   2,20  2,05365  2,26920  0,02663  -0,21554     -2,19R
128   2,97  1,46538  1,55304  0,04716  -0,08766     -0,97 X 132   3,22  1,73838  2,04939  0,01747  -0,31101     -3,09R
133   2,57  1,86332  2,08658  0,01052  -0,22326     -2,20R 134   3,14  1,90472  2,11329  0,01901  -0,20857     -2,08R
139   2,21  1,90472  2,16625  0,01620  -0,26153     -2,59R 140   2,56  1,81757  2,06643  0,01651  -0,24886     -2,47R
141   2,53  1,76641  1,99133  0,01485  -0,22492     -2,23R R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
d. Persamaan Keempat