Persamaan Regresi Kelima Persamaan Linier a. Persamaan Regresi Pertama

Source DF SS MS F P Regression 3 208707 69569 87,83 0,000 Residual Error 145 114856 792 Total 148 323563 Source DF Seq SS Ln X1 1 45197 Ln X2 1 61546 Ln X3 1 101964 Unusual Observations Obs Ln X1 Y Fit SE Fit Residual St Resid 16 2,59 219,00 156,26 4,60 62,74 2,26R 26 2,62 233,60 101,98 3,90 131,62 4,72R Lampiran 4. Lanjutan 48 2,66 210,00 141,42 4,32 68,58 2,47R 111 2,06 233,60 169,60 5,36 64,00 2,32R 114 2,86 51,10 9,29 8,09 41,81 1,55 X 123 3,55 25,50 -13,55 8,22 39,05 1,45 X 128 2,97 29,20 34,80 12,75 -5,60 -0,22 X 132 3,22 54,75 115,99 4,78 -61,24 -2,21R 133 2,57 73,00 130,62 2,73 -57,62 -2,06R 139 2,21 80,30 149,29 4,35 -68,99 -2,48R R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.

e. Persamaan Regresi Kelima

The regression equation is Y = 50,6 - 17,4 Ln X1 + 179 Ln X3 Predictor Coef SE Coef T P Constant 50,56 23,75 2,13 0,035 Ln X1 -17,413 7,249 -2,40 0,018 Ln X3 179,01 13,33 13,43 0,000 S = 29,2096 R-Sq = 61,5 R-Sqadj = 61,0 Analysis of Variance Source DF SS MS F P Regression 2 198996 99498 116,62 0,000 Residual Error 146 124567 853 Total 148 323563 Source DF Seq SS Ln X1 1 45197 Ln X3 1 153799 Unusual Observations Obs Ln X1 Y Fit SE Fit Residual St Resid 16 2,59 219,00 144,78 3,35 74,22 2,56R 26 2,62 233,60 112,67 2,51 120,93 4,16R 44 2,46 240,90 178,49 5,15 62,41 2,17R Universitas Sumatera Utara 48 2,66 210,00 129,45 2,74 80,55 2,77R 85 2,07 255,50 193,53 6,40 61,97 2,17R 106 2,84 29,20 1,19 8,04 28,01 1,00 X 110 3,32 47,45 -7,31 8,00 54,76 1,95 X 111 2,06 233,60 165,92 5,45 67,68 2,36R 114 2,86 51,10 0,77 8,01 50,33 1,79 X 123 3,55 25,50 -11,29 8,50 36,79 1,32 X 128 2,97 29,20 -1,08 7,88 30,28 1,08 X 132 3,22 54,75 119,69 4,84 -64,94 -2,25R 139 2,21 80,30 151,39 4,47 -71,09 -2,46R 140 2,56 65,70 131,06 2,84 -65,36 -2,25R R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage. Lampiran 4. Lanjutan 3. Persamaan Logaritma-Linier a. Persamaan Pertama The regression equation is Ln Y = 1,79 - 0,000060 X1 - 0,000000 X2 + 0,0863 X3 - 0,0548 X4 - 0,00149 X5 - 0,000017 X6 Predictor Coef SE Coef T P Constant 1,79283 0,07463 24,02 0,000 X1 -0,00006039 0,00001885 -3,20 0,002 X2 -0,00000000 0,00000000 -0,10 0,918 X3 0,086251 0,006566 13,14 0,000 X4 -0,05484 0,02750 -1,99 0,048 X5 -0,001492 0,003931 -0,38 0,705 X6 -0,00001659 0,00004694 -0,35 0,724 S = 0,110462 R-Sq = 68,7 R-Sqadj = 67,4 Analysis of Variance Source DF SS MS F P Regression 6 3,80373 0,63396 51,96 0,000 Residual Error 142 1,73265 0,01220 Total 148 5,53638 Source DF Seq SS X1 1 1,10976 X2 1 0,55360 X3 1 2,08762 X4 1 0,04974 X5 1 0,00149 X6 1 0,00152 Unusual Observations Obs X1 Ln Y Fit SE Fit Residual St Resid 26 420 2,36847 1,99249 0,01966 0,37598 3,46R 40 244 2,11860 2,06871 0,04377 0,04988 0,49 X Universitas Sumatera Utara 85 117 2,40739 2,50964 0,04327 -0,10225 -1,01 X 94 560 1,60369 1,79453 0,04286 -0,19085 -1,87 X 106 685 1,46538 1,70801 0,02502 -0,24263 -2,26R 120 159 2,05365 2,31048 0,03103 -0,25683 -2,42R 123 3569 1,40654 1,54085 0,05212 -0,13431 -1,38 X 128 925 1,46538 1,69457 0,06061 -0,22919 -2,48RX 132 1644 1,73838 1,99401 0,02543 -0,25563 -2,38R 139 162 1,90472 2,16956 0,02077 -0,26485 -2,44R 140 365 1,81757 2,07282 0,02090 -0,25525 -2,35R 141 342 1,76641 1,98976 0,01536 -0,22335 -2,04R R denotes an observation with a large standardized residual. X denotes an observation whose X value gives it large leverage.

b. Persamaan Regresi Kedua