Rate of Escape w.r.t. specific Length Function

this can be easily checked by conditioning on the last visit of y when walking from x to w. We have the following important equations, which follow by conditioning on the last visits of x i and x, the first visits of y i and y respectively: G i x i , y i |z = G i x i , x i |z · L i x i , y i |z = F i x i , y i |z · G i y i , y i |z, Gx, y|z = Gx, x|z · Lx, y|z = F x, y|z · G y, y|z. 2.4 Observe that the generating functions F ·, ·|z and L·, ·|z have also radii of convergence strictl bigger than 1. 3 The Asymptotic Entropy

3.1 Rate of Escape w.r.t. specific Length Function

In this subsection we prove existence of the rate of escape with respect to a specific length function. From this we will deduce existence and a formula for the asymptotic entropy in the upcoming subsection. We assign to each element x i ∈ V i the “length” l i x i := − log Lo, x i |1 = − log L i o i , x i |ξ i . We extend it to a length function on V by assigning to v 1 . . . v n ∈ V the length lv 1 . . . v n := n X i=1 l τv i v i = − n X i=1 log Lo, v i |1 = − log Lo, v 1 . . . v n |1. Observe that the lengths can also be negative. E.g., this can be interpreted as height differences. The aim of this subsection is to show existence of a number ℓ ∈ R such that the quotient lX n n tends to ℓ almost surely as n → ∞. We call ℓ the rate of escape w.r.t. the length function l·. We follow now the reasoning of [11, Section 3]. Denote by X k n the projection of X n to the first k letters. We define the k-th exit time as e k := min m ∈ N ∀n ≥ m : X k n is constant . Moreover, we define W k := X e k , τ k := τW k and kn := max{k ∈ N | e k ≤ n}. We remark that kX n k → ∞ as n → ∞, and consequently e k ∞ almost surely for every k ∈ N; see [11, Prop. 2.5]. Recall that e W k is just the laster letter of the random word X e k . The process τ k k∈N is Markovian and has transition probabilities ˆ qi, j = α j α i ξ i ξ j 1 − ξ j 1 − ξ i 1 1 − ξ j G j o j , o j |ξ j − 1 for i 6= j and ˆ qi, i = 0; see [11, Lemma 3.4]. This process is positive recurrent with invariant probability measure νi = C −1 · α i 1 − ξ i ξ i 1 − 1 − ξ i G i o i , o i |ξ i , where C := X i∈I α i 1 − ξ i ξ i 1 − 1 − ξ i G i o i , o i |ξ i ; 81 see [11, Section 3]. Furthermore, the rate of escape w.r.t. the block length exists almost surely and is given by the almost sure constant limit ℓ = lim n→∞ kX n k n = lim k→∞ k e k = 1 P i, j∈I ,i6= j νi α j 1− ξ j 1− ξ i γ ′ i, j 1 see [11, Theorem 3.3], where γ i, j z := 1 α i ξ i z ξ j z 1 1 − ξ j z G j o j , o j ξ j z − 1 . Lemma 3.1. The process e W k , τ k k∈N is Markovian and has transition probabilities q g, i, h, j =    α j α i ξ i ξ j 1− ξ j 1− ξ i L j o j , h| ξ j , if i 6= j, 0, if i = j. Furthermore, the process is positive recurrent with invariant probability measure πg, i = X j∈I ν jq ∗, j, g, i . Remark: Observe that the transition probabilities q g, i, h, j of e W k , τ k k∈N do not depend on g. Therefore, we will write sometimes an asterisk instead of g. Proof. By [11, Section 3], the process e W k , e k − e k−1 , τ k k∈N is Markovian and has transition prob- abilities ˜ q g, m, i, h, n, j =    1− ξ j 1− ξ i P s∈V j k n−1 i sps, h, if i 6= j, 0, if i = j, where k n i s := P X n = s, ∀l ≤ n : X l ∈ V × i |X = o] for s ∈ V × ∗ \ V i . Thus, Ý W k , τ k k∈N is also Markovian and has the following transition probabilities if i 6= j: q g, i, h, j = X n≥1 ˜ q g, ∗, i, h, n, j = 1 − ξ j 1 − ξ i X s∈V j X n≥1 k n−1 i sps, h = 1 − ξ j 1 − ξ i X s∈V j L j o j , s| ξ j 1 − ¯ H i 1 ps, h = α j α i ξ i ξ j 1 − ξ j 1 − ξ i L j o j , h| ξ j . In the third equality we conditioned on the last visit of o before finally walking from o to s and we remark that h ∈ V × j . A straight-forward computation shows that π is the invariant probability 82 measure of e W k , τ k k∈N , where we write A := g, i i ∈ I , g ∈ V × i : X g,i∈A πg, i · q g, i, h, j = X g,i∈A X k∈I νk · q ∗, k, g, i · q ∗, i, h, j = X i∈I q ∗, i, h, j X k∈I νk X g∈V × i q ∗, k, g, i = X i∈I q ∗, i, h, j X k∈I νk · ˆ qk, i = X i∈I q ∗, i, h, j · νi = πh, j. Now we are able to prove the following: Proposition 3.2. There is a number ℓ ∈ R such that ℓ = lim n→∞ lX n n almost surely. Proof. Define h : A → R by hg, j := lg. Then P k λ=1 h e W λ , τ λ = P k λ=1 l e W λ = lW k . An application of the ergodic theorem for positive recurrent Markov chains yields l W k k = 1 k k X λ=1 h e W λ , τ λ n→∞ −−−→ C h := Z h d π, if the integral on the right hand side exists. We now show that this property holds. Observe that the values G j o j , g| ξ j are uniformly bounded from above for all g, j ∈ A : G j o j , g| ξ j = X n≥0 p n j o j , g ξ n j ≤ 1 1 − ξ j ≤ 1 1 − ξ max . For g ∈ V × ∗ , denote by |g| the smallest n ∈ N such that p n τg o τg , g 0. Uniform irreducibility of the random walk P i on V i implies that there are some ǫ 0 and K ∈ N such that for all j ∈ I , x j , y j ∈ V j with p j x j , y j 0 we have p k j x j , y j ≥ ǫ for some k ≤ K. Thus, for g, j ∈ A we have G j o j , g| ξ j ≥ ǫ |g| ξ |g|·K j ≥ ǫ ξ K min |g| . Observe that the inequality |g| · log ǫ ξ K min log11 − ξ max holds if and only if |g| log1 − ξ max logǫ ξ K min . Define the sets M 1 := n g ∈ V × ∗ |g| ≥ log1 − ξ max log ǫ ξ K min o , M 2 := n g ∈ V × ∗ |g| log1 − ξ max log ǫ ξ K min o . 83 Recall Equation 2.4. We can now prove existence of R h d π: Z |h| dπ = X g, j∈A log L j o j , g| ξ j · πg, j ≤ X g, j∈A log G j o j , g| ξ j · πg, j + X g, j∈A log G j o j , o j |ξ j · πg, j ≤ X g, j∈A :g∈M 1 log G j o j , g| ξ j · πg, j + X g, j∈A :g∈M 2 log G j o j , g| ξ j · πg, j + max j∈I log G j o j , o j |ξ j ≤ X g, j∈A :g∈M 1 logǫ ξ K min |g| | · πg, j + X g, j∈A :g∈M 2 log1 − ξ max · πg, j + max j∈I log G j o j , o j |ξ j ≤ X g, j∈A :g∈M 1 logǫ ξ K min | · |g| · πg, j + log1 − ξ max + max j∈I log G j o j , o j |ξ j ∞, since P g, j∈A |g| · πg, j ∞; see [11, Proof of Prop. 3.2]. From this follows that lW k k tends to C h almost surely. The next step is to show that lX n − lW kn n n→∞ −−−→ 0 almost surely. 3.1 To prove this, assume now that we have the representations W kn = g 1 g 2 . . . g kn and X n = g 1 g 2 . . . g kn . . . g kX n k . Define M := max | logǫ ξ K min |, | log1 − ξ max | . Then: lX n − lW kn = − kX n k X i= kn+1 log L τg i o τg i , g i | ξ τg i ≤ kX n k X i= kn+1 log G τg i o τg i , g i | ξ τg i G τg i o τg i , o τg i | ξ τg i ≤ kX n k X i= kn+1:g i ∈M 1 log G τg i o τg i , g i | ξ τg i + kX n k X i= kn+1:g i ∈M 2 log G τg i o τg i , g i | ξ τg i + kX n k − kn · log1 − ξ max 84 ≤ kX n k X i= kn+1:g i ∈M 1 logǫ ξ K min |g i | + kX n k X i= kn+1:g i ∈M 2 log1 − ξ max + kX n k − kn · log1 − ξ max ≤ kX n k X i= kn+1:g i ∈M 1 |g i | · M + kX n k X i= kn+1:g i ∈M 2 M + kX n k − kn · M ≤ 3 · M · n − e kn . Dividing the last inequality by n and letting n → ∞ provides analogously to Nagnibeda and Woess [23, Section 5] that lim n→∞ lX n − lW kn n = 0 almost surely. Recall also that ke k → ℓ and e kn n → 1 almost surely; compare [23, Proof of Theorem D] and [11, Prop. 3.2, Thm. 3.3]. Now we can conclude: lX n n = lX n − lW kn n + l W kn kn kn e kn e kn n n→∞ −−−→ C h · ℓ almost surely. 3.2 We now compute the constant C h from the last proposition explicitly: C h = X g, j∈A lg · X i∈I νi · q ∗, i, g, j = X i, j∈I , i6= j X g∈V × j − log L j o j , g| ξ j νi α j α i ξ i ξ j 1 − ξ j 1 − ξ i L j o j , g| ξ j . 3.3 We conclude this subsection with the following observation: Corollary 3.3. The rate of escape ℓ is non-negative and it is the rate of escape w.r.t. the Greenian metric, which is given by d Green x, y := − log F x, y|1. That is, ℓ = lim n→∞ − 1 n log F e, X n |1 ≥ 0. Proof. By 2.4, we get ℓ = lim n→∞ − 1 n log F e, X n |1 − 1 n log GX n , X n |1 + 1 n log Go, o|1. Since F e, X n |1 ≤ 1 it remains to show that Gx, x|1 is uniformly bounded in x ∈ V : for v, w ∈ V , the first visit generating function is defined as Uv, w|z = X n≥1 P X n = w, ∀m ∈ {1, . . . , n − 1} : X m 6= w | X = v z n . 3.4 Therefore, Gx, x|z = X n≥0 Ux, x|z n = 1 1 − Ux, x|z . 85 Since Ux, x|z 1 for all z ∈ [1, R, Ux, x|0 = 0 and Ux, x|z is continuous, stricly increasing and strictly convex, we must have Ux, x|1 ≤ 1 R , that is, 1 ≤ Gx, x|1 ≤ 1 − 1 R −1 . This finishes the proof.

3.2 Asymptotic Entropy

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52