Step 1: All lines in wild-type background by time Step 2: Approximation of

For θ ≥ 1, we compute, similar to 4.20, Z 1 Z w t ∗ α,θ w; 0t ∗ α,θ x; w w 1 − w 1 − xd x dw = Z 1 Z w Z 1 w Z 1 w e 2 αw+x− y−z 1 − w 2 x wx yz θ dzd y d x d w w,x, y,z→ ≤ 2 αw,x, y,z O 1 α Z 2 α Z z Z y Z w e w+x − y−z 2α − w 2 w yz d x d wd y dz = O 1 α Z 2 α Z z Z y Z w ∧1 e −z w 2α − w 2 yz d x d wd y dz + 1 α Z 2 α 1 Z 2 α x Z 2 α w Z 2 α y e w+x − y−z w 2α − w 2 yz dzd y d wd x = O 1 α 3 Z 2 α Z z Z y ∧α e −z d wd y dz + 1 α Z 2 α 1 Z 2 α x Z 2 α w Z 2 α y e w+x − y−z 2α − w 2 x dzd y d wd x = O 1 α 3 , since the last term in the second to last line equals the term in the fifth line of 5.14 such that we are done. 6 Proof of Theorem 1 Recall the transition rates of the process ξ X given in Table 1. We prove Theorem 1 in four steps. First, we establish that almost surely, all lines in ξ X are in the wild-type background by time β . In Step 2, we give an approximate structured coalescent η X , which has different rates before and after β . This process already provides us with a good approximation for ξ ≥β . In Step 3, we will use a random time-change of the diffusion X to a supercritical Feller diffusion Y with immigration. In Step 4 we will use facts about the connection of the supercritical branching process with immigration to a Yule process with immigration.

6.1 Step 1: All lines in wild-type background by time

β We will show below that all lines in the structured coalescent ξ X are in the wild-type background by time β . Proposition 6.1. For all values of θ , α, P α,θ [ξ B β = ;] = 1. Proof. Note that the structured coalescent ξ X can be constructed using a finite number of processes ξ X 1 , ξ X 2 , ξ X 3 , ξ X 4 compare Table 3. In particular, the escape of lines in the beneficial background to the wild-type background due to mutation is given by the processes ξ X 2 . Moreover, we know from Lemma 5.2 that any line in the beneficial background by time T + ǫ for some ǫ 0 will experience such an escape since ξ X 2 ∩ [T ; T +] 6= ; almost surely. Hence the assertion follows. 2098 event coal in B coal in b mut from B to b rec from B to b rec from b to B rate 1 −X t X t θ 2 1 −X t X t ρ1 − X t Table 4: Transition rates of η X in the interval [0; β ]. event coal in B coal in b mut from B to b rec from B to b rec from b to B rate 1 Table 5: Transition rates of η X in the interval [ β ; ∞].

6.2 Step 2: Approximation of

ξ ≥0 by η ≥0 In order to define the process η X we use transition rates as given in Tables 4 and 5. Moreover, set η ≥s := Z P α,θ [dX ]η X s+t t ≥0 . We will establish that ξ ≥0 and η ≥0 are close in variational distance. Proposition 6.2. The bound d T V ξ ≥0 , η ≥0 = O 1 log α 2 . holds in the limit of large α and uniformly on compacta in n, γ and θ . Remark 6.3. Note that η X t t ≥β does not depend on X i.e. η ≥β = η X t t ≥β in distribution for all realizations of X . Using the same argument as in Step 1 all lines of η β are in the wild-type background. These two facts together imply that ξ ≥β approximately has the same transition rates as the finite Kingman coalescent C , which is the statement of 3.8. Proof of Proposition 6.2. Again it is important to note that ξ X can be constructed using a finite number of Poisson processes ξ X 1 , ..., ξ X 6 . In the same way, η X can be constructed using a finite number of Poisson processes ξ X 1 , ξ X 2 , ξ X 3 , ξ X 5 and Poisson processes with rates 1 −X t X t . Consider times 0 ≤ β ≤ β first and recall T X i = sup ξ X i . A single line may escape the benefi- cial background and recombine back in ξ X , while this is not possible in η X . Such an event in ξ X requires that either ξ X 4 ∩ [T ; T X 2 ] 6= ; or ξ X 4 ∩ [T ; T X 3 ] 6= ; for one triple of the processes ξ X 2 , ξ X 3 , ξ X 4 , which has a probability of order O 1 log α 2 by 5.3 and 5.4. Hence, ignoring these events produces a total variation distance of at most O 1 log α 2 . The coalescence rates in the 2099 beneficial background of the processes ξ X and η X differ by 1. By the bound 5.5, the different coalescence rates in the beneficial background produce a total variation distance of O log α α . Lastly, since 1 1 −X t = 1 + X t 1 −X t , we can assume that coalescences in the wild-type background in ξ X occur along events of one pair of processes ξ X 5 ∪ ξ X 6 . Such an event requires that either ξ X 5 ∩ [T ; T ] 6= ;, ξ X 6 ∩ [T ; T X 2 ] 6= ; or ξ X 6 ∩ [T ; T X 3 ] 6= ;. These events together have a probability of order O 1 p α by 5.5, 5.6 and 5.7 and hence, ignoring these events gives a total variation distance of order O 1 p α . Hence, ξ X and η X are close for times 0 ≤ β ≤ β . Let us turn to times β ≥ β . It is important to notice that, using the same arguments as in the proof of Proposition 6.1, P α,θ [η B β = ;] = 1. Note that η X differs from ξ X by ignoring back-recombinations along processes ξ X 4 and by changing the coalescence rate in the wild-type background from 1 1 −X t to 1. Considering a single line, ignoring events in ξ X 4 produces a total variation distance of order O 1 α log α by 5.1. Hence, we can assume that all lineages are in the wild-type background for β ≥ β . For coalescences in the wild-type background, we are using that 1 1 −X t = 1 + X t 1 −X t and the fact that ignoring events, which occur along one process ξ X 6 produces a total variation distance of order O 1 α 2 by 5.2. Putting all arguments together, we have d T V ξ ≥0 , η ≥0 ≤ d T V ξ ≤β≤β , η ≤β≤β + d T V ξ ≥β , η ≥β = O 1 log α 2 .

6.3 Step 3: Random time-change to a supercritical branching process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52