k = 0 while d k = C 0 for all k ≥ 1. k = 2 k → 0 quite rapidly as k → ∞. On the other hand,

hence in that situation examples satisfying 4.10 cannot exist. In spite of this observation we will show now that d X t, s may become arbitrarily small while dt, s ≥ C 0. Hence an estimate dt, s ≤ c d X t, s cannot be valid in general. Recall that in view of Proposition 4.1 a relation d X t, s ≤ c dt, s is impossible as well. Proposition 4.2. There are weights α and σ on T = N such that the corresponding process X is a.s. bounded and such that lim k →∞ d X 0, k = 0 while d0, k = C 0 for all k ≥ 1. Proof. For k ∈ N choose σk = 2 −k while α0 = 0 and αk = k −1 for k ≥ 1. Of course, the generated process X is a.s. bounded. Moreover, if k ≥ 1, then it follows that d X

0, k = 2

−k k X v=1 v −2 1 2 . In particular, d X

0, k → 0 quite rapidly as k → ∞. On the other hand,

d 0, k = 2 −1 α1 = 2 −1 and this completes the proof with C = 2 −1 . 5 Proof of Proposition 2.2 Before proving Proposition 2.2, let us come back to a geometric interpretation of Gaussian processes briefly mentioned at the end of Section 3. We identify a process X = X t t ∈T on a probability space Ω, A , P with the subset {X t : t ∈ T } of the Hilbert space L 2 Ω, A , P. The induced distance equals kX t − X s k 2 = E|X t − X s | 2 1 2 = d X t, s , hence also N T, d X , ǫ = N X , k · k 2 , ǫ. Proof of Proposition 2.2: We first give the lower bounds for N T, d X , ǫ. By 3.10 and 3.11 it follows that N X − [0, 1] · X , || · || 2 , ǫ p 2 ≥ NT, d, 2ǫ − 1. 5.1 Our next task is to replace X − [0, 1] · X by X in 5.1 by using the following trivial fact. Lemma 5.1. Let X be a subset of a normed space and M X := sup x ∈X ||x||. Then N [0, 1] · X , k · k , 2ǫ ≤ NX , k · k , ǫ M X ǫ and 5.2 N X − [0, 1] · X , k · k , 3ǫ ≤ NX , k · k , ǫ 2 M X ǫ . 5.3 751 of the lemma. Let B be an ǫ–net for X and set C = j ǫ M X y : y ∈ B, j ∈ N , 1 ≤ j ≤ M X ǫ . Clearly, {C} ≤ {B} M X ǫ . Take any z = θ x ∈ [0, 1] · X with x ∈ X , θ ∈ [0, 1]. Find y ∈ B and a positive integer j ≤ M X ǫ such that ||x − y|| ǫ, j − θ M X ǫ ≤ 1 . Then z ′ := j ǫ M X y ∈ C and observe that ||z − z ′ || = θ x − j ǫ M X y ≤ θ ||x − y|| + θ − j ǫ M X || y|| ǫ + ǫ M X M X = 2ǫ. Hence, C is a 2 ǫ–net for [0, 1] · X and the first claim of the lemma is proved. The second one follows immediately. We may proceed now with the proof of Proposition 2.2. Combining 5.3 with 5.1 leads to N T, d X , ǫ 2 ≥ ǫ M X ” N T, d, 6 p 2 ǫ − 1 — . Hence, we conclude Z ∞ p log N T, d X , u du ∞ ⇒ Z ∞ p log N T, d, u du ∞ and sup ǫ0 ǫ 2 log N T, d X , ǫ ∞ ⇒ sup ǫ0 ǫ 2 log N T, d, ǫ ∞ . Conversely, we will move now towards an upper bound for N T, d X , ǫ. By Lemma 3.3 and Proposi- tion 3.2 of [9] we have N T, d Y , ǫ ≤ ˜ N T, ˆ d, ǫ + 1 ≤ ˜ N T, d, ǫ2 + 1 ≤ NT, d, ǫ4 + 1. 5.4 Next, if ˆ X is defined as in 3.3, then 3.6 yields ˆ X ⊆ ∞ X m=0 2 −m Y, 752 and from this inclusion we trivially obtain that N T, d ˆ X , 2 ǫ ≤ N T, d ˆ X , ∞ X m=0 m + 1 −2 ǫ ≤ ∞ Y m=0 N T, d 2 −m Y , m + 1 −2 ǫ = ∞ Y m=0 N T, d Y , 2 m m + 1 −2 ǫ. ≤ ∞ Y m=0 N ∗ T, d, 2 m −2 m + 1 −2 ǫ, where we used 5.4 on the last step and N ∗ T, d, r := ¨ N T, d, r + 1 : N T, d Y , 4r 1, 1 : N T, d Y , 4r = 1. It follows that log N T, d ˆ X , 2 ǫ ≤ X {m≥0: 2 m m+1 −2 ǫ≤M Y } log € N T, d, 2 m −2 m + 1 −2 ǫ + 1 Š , 5.5 where M Y := sup t ∈T ||Y t || 2 . For the Dudley integral this implies Z ∞ p log N T, d ˆ X , 2 ǫ dǫ ≤ ∞ X m=0 Z MY 2mm+1−2 p log N T, d, 2 m −2 m + 1 −2 ǫ + 1 d ǫ ≤ ∞ X m=0 m + 1 2 2 m −2 Z ∞ p log N T, d, u + 1 du = C Z ∞ p log N T, d, u + 1 du . Hence, Z ∞ p log N T, d, u du ∞ ⇒ Z ∞ p log N T, d ˆ X , u du ∞ . Moreover, 5.5 yields sup ǫ0 ǫ 2 log N T, d, ǫ ∞ ⇒ sup ǫ0 ǫ 2 log N T, d ˆ X , ǫ ∞ . The final passage goes from ˆ X to X . Since X ⊆ [0, 1] · ˆ X , by applying 5.2 to ˆ X we obtain log N T, d X , 2 ǫ ≤ log N[0, 1] · ˆ X , || · || 2 , 2 ǫ ≤ log NT, d ˆ X , ǫ + log M ˆ X ǫ . Hence Z ∞ p log N T, d ˆ X , u du ∞ ⇒ Z ∞ p log N T, d X , u du ∞, as well as sup ǫ0 ǫ 2 log N T, d ˆ X , ǫ ∞ ⇒ sup ǫ0 ǫ 2 log N T, d X , ǫ ∞. By combining the preceding estimates we finish the proof. ƒ 753 6 Applications to binary trees

6.1 General weights

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52