Normality Test The Analysis of Data
The Liliefors shows that the significant degree of 0.05 in L0.0525 = 0.173
H1 : L 0.173 H0
: L ≤ 0.173 In the table 4.4, the L
max
value is 0.135. Therefore, H is accepted
because the result shows that L
max
is lower than L
table
0.135 0.173. It means that the data in experiment class post-test is normally
distributed. b.
The Normality Test of Control Class Table 4.5
Calculation of Pre-test Normality in Control Class
No. X
f fX
fX
2
p=fn ∑P
z = Xi- Xs
ф T=ф-∑p
1 43
1 43
1849 0.04
0.04 -2.22548
0.0102 0.0298
2 48
1 48
2304 0.04
0.08 -1.49341
0.0681 0.0119
3 50
2 100
5000 0.08
0.16 -1.20059
0.1151 0.0449
4 51
1 51
2601 0.04
0.2 -1.05417
0.1469 0.0531
5 52
3 156
8112 0.12
0.32 -0.90776
0.1841 0.1359
6 57
1 57
3249 0.04
0.36 -0.1757
0.4325 0.0725
7 59
2 118
6962 0.08
0.44 0.11713
0.5438 0.1038
8 60
7 420
25200 0.28
0.72 0.263543
0.6026 0.1174
9 62
1 62
3844 0.04
0.76 0.556369
0.7088 0.0512
10 64
2 128
8192 0.08
0.84 0.849195
0.7995 0.0405
11 65
2 130
8450 0.08
0.92 0.995608
0.8389 0.0811
12 70
1 70
4900 0.04
0.96 1.727672
0.9573 0.0027
13 72
1 72
5184 0.04
1 2.020498
0.9783 0.0217
Total
∑X=
∑
F=
∑
fX=
∑f
X
2
= 753
25 1455
85847
S= 6.83
S
2
= 46.6
rata2x= 58.2
Lmax= 0.1359
Ltable= 0.173
∑ [
∑ ]
[ ]
√
The Liliefors shows that the significant degree of 0.05 in L0.0525 = 0.173
H1 : L 0.173 H0
: L ≤ 0.173 In the table 4.5, the L
max
value is 0.1359. Therefore, H is accepted
because the result shows that L
max
is lower than L
table
0.1359 0.173. It means that the data in control class pre-test is normally distributed.
Table 4.6 Calculation of Post-test Normality in Control Class
No. X
f fX
fX
2
p=fn ∑P
z = Xi- Xs
ф T=ф-∑p
1 50
1 50
2500 0.04
0.04 -2.46757
0.0069 0.0331
2 55
1 55
3025 0.04
0.08 -1.71342
0.0436 0.0364
3 57
2 114
6498 0.08
0.16 -1.41176
0.0793
0.0807
4 59
1 59
3481 0.04
0.2 -1.11011
0.1335 0.0665
5 61
1 61
3721 0.04
0.24 -0.80845
0.2119 0.0281
6 64
2 128
8192 0.08
0.32 -0.35596
0.3632 0.0432
7 65
1 65
4225 0.04
0.36 -0.20513
0.4207 0.0607
8 66
2 132
8712 0.08
0.44 -0.0543
0.4801 0.0401
9 67
1 67
4489 0.04
0.48 0.096531
0.5359 0.0559
10 68
3 204
13872 0.12
0.6 0.24736
0.5948 0.0052
11 70
4 280
19600 0.16
0.76 0.54902
0.7054 0.0546
12 72
2 144
10368 0.08
0.84 0.850679
0.8023 0.0377
13 73
1 73
5329 0.04
0.88 1.001508
0.8413 0.0387
14 75
1 75
5625 0.04
0.92 1.303167
0.9032 0.0168
15 76
2 152
11552 0.08
1 1.453997
0.9265 0.0735
Total
∑X=
∑
F=
∑
fX=
∑f
X
2
= 978
25 1659
111189
S= 6.63
S
2
= 43.91
rata2x= 66.36
Lmax= 0.0807
Ttable= 0.173
∑ [
∑ ]
[ ]
√
The Liliefors shows that the significant degree of 0.05 in L0.0525 = 0.173
H1 : L 0.173 H0
: L ≤ 0.173 In the table 4.6, the L
max
value is 0.0807. Therefore, H is accepted
because the result shows that L
max
is lower than L
table
0.0807 0.173. It means that the data in control class post-test is normally distributed.