Quenched regime getdoc068f. 511KB Jun 04 2011 12:04:02 AM

Proof. The proof is similar to that of Lemma 4.4 and is omitted here. We are now ready to prove the existence of λ p and give a variational formula. Corollary 6.6. For p ∈ 0, ∞, the annealed Lyapunov exponent λ p exists and is given by λ p = sup α∈[0,γ] inf ββ c r −β + αL sup p β 6.21 for all γ 0 large enough. Proof. Using Lemmas 6.1, 6.3, 6.4 and 6.5 one may proceed similarly to the quenched case. Proof of Theorem 2.7. In order to derive the representation of Theorem 2.7, we distinguish two cases: First assume that L sup p does not have a zero in 0, β c r . From the fact that L sup p is continuous and increasing cf. Lemma 5.11, we infer that L sup p β 0 for all β ∈ −∞, β c r , whence taking α ↓ 0 in Corollary 6.6 yields λ p = −β c r . Otherwise, if such a zero exists, the properties of L sup p derived in Lemma 5.11 first imply the unique- ness of such a zero and then, in an analogous way to the proof of Theorem 2.1 and in combination with 6.21, that λ p equals the zero of L sup p −·. 7 Further results While in sections 4 and 6 we derived the existence of the corresponding Lyapunov exponents and gave formulae for them, we now concentrate on the proofs of the remaining results.

7.1 Quenched regime

We start with proving the result on the transition from zero to positive speed of the random walk in random potential, Proposition 2.5. Proof of Proposition 2.5. a In order to deal with the explicit dependence of the respective quan- tities on h, we use the notation Y h t t ∈R + for a continuous-time random with generator κ∆ h as well as Z n for the set of discrete time simple random walk paths on Z starting in 1 and hitting 0 for the first time at time 2n + 1. Furthermore, J Y denotes the number of jumps of the process Y to the right before it hits 0 and we may and do assume h 1. For β ≤ β h c r := β c r = κ1 − p 1 − h 2 we then have L h β = D log E 1 exp n Z T ξY h s + β ds oE = D log X n ∈N X Z ∈Z n 1 + h 2 1 − h 2 4 n 2n Y k=0 κ κ − ξZ k − β E = log1 + h + D log E 1 exp n Z T ξY s + β ds + JY log1 − h 2 oE . 7.1 2323 Now in order to prove a, according to Corollary 2.3 it is enough to show lim sup h ↓0 L h β h c r 0. 7.2 By direct inspection or Lemma 5.5 we get that a.s. the expression log1 + h + log E 1 exp n Z T ξY s + β h c r ds + J Y log1 − h 2 o = log X n ∈N X z ∈Z n p 1 + h 2 2n+1 p 1 − h 2n Y k=0 κ p 1 − h 2 κ p 1 − h 2 − ξZ k 7.3 is bounded from above uniformly in h ∈ [0, 12. Considering the right-hand side of 7.3 one observes that for h ↓ 0 it converges to 7.3 evaluated at h = 0. Since furthermore L β c r 0, dominated convergence yields 7.2. b Departing from 7.1 we write L h β h c r = D log X n ∈N X Z ∈Z n 2 −2n+1 κ p 1 + h κ p 1 − h − ξ1 2n Y k=1 κ p 1 − h 2 κ p 1 − h 2 − ξZ k E . Now if L 1 β → ∞ for β ↑ β 1 c r = κ, then L h β h c r → ∞ for h ↑ 1 as well. Otherwise, if lim β↑κ L 1 β ∞, then dominated convergence yields L h β h c r → L 1 κ = 〈log κ −ξ1 〉 as h ↑ 1, and the claim follows. Proof of Proposition 2.6. a We first show convexity. Writing u κ t, x to emphasise the depen- dence of the solution to 1.1 on κ, we have for a random walk X t t ∈R + with generator ∆ h : λ κ = lim t →∞ 1 t log u κ t, x = lim t →∞ 1 t log E exp n Z t ξX κs ds o = lim t →∞ 1 t log E exp n 1 κ Z κt ξX s ds o = κ lim t →∞ 1 t log E exp n 1 κ Z t ξX s ds o = κΨ1κ, 7.4 where Ψx := lim t →∞ 1 t log E exp n x Z t ξX s ds o for x ≥ 0. Note that the limit defining Ψx exists in [−1, 0] for all x ∈ R + due to Theorem 2.1 and 1.8. Hölder’s inequality now tells us that Ψ is convex and choosing α := β x β x+1−β y and γ := 1−β y β x+1−β y , we obtain the convexity of xΨ1 x in a similar manner: β x + 1 − β yΨ 1 β x + 1 − β y = β x + 1 − β yΨ α x + γ y ≤ αβ x + 1 − β yΨ1x + γβ x + 1 − β yΨ1 y = β xΨ1x + 1 − β yΨ1 y. 2324 In combination with 7.4 the convexity of κ 7→ λ κ follows. To show that λ κ is nonincreasing in κ ∈ 0, ∞ assume to the contrary that there is 0 κ 1 κ 2 such that λ κ 1 λ κ 2 . The convexity of λ would then imply lim κ→∞ λ κ = ∞ which is impossible since we clearly have λ κ ≤ 0 for all κ ∈ 0, ∞. b From Theorem 2.1 we deduce λ κ ∈ [−β c r , 0], 7.5 and using 1.8 the claim follows. c 2.7 follows from 7.4 and the fact that lim x ↓0 Ψx = 0, which is due to the boundedness of ξ from below. 2.8 follows using Ψ1 = λ 1 0, the fact that Ψx ∈ [−1, 0] due to Theorem 2.1 and 1.8, as well as 7.4 and the monotonicity of Ψ.

7.2 Annealed regime

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52