Dilation of convex sets

2.2 Dilation of convex sets

Fact 1. Let K be an open convex set then, for every t ≥ 1, K t = K + t − 1 2 K − K = t + 1 2 K + t − 1 2 −K 8 and if moreover K is centrally symmetric then K t = t K. Proof: For t = 1, the equalities are obvious, so we assume t 1. The second equality in 8 deduces from the convexity of K. To prove the equality of the sets in 8, we prove both inclusions: Let x ∈ K t . Since K is open and t 1, from 7, there exists a point a ∈ R n such that |[a, x]| t+1 2 |K ∩ [a, x]|. Since K is convex it follows that K ∩ [a, x] is an interval. Denote by b and c its endpoints. We may assume that c ∈ b, x] and b ∈ [a, c. Hence there is λ ∈ 0, 1] such that c = 1 − λb + λx. This gives kc − bk 2 λ = kx − bk 2 ≤ kx − ak 2 t + 1 2 kc − bk 2 . Thus 1 λ t+1 2 . Therefore x = c + 1 λ − 1 c − b ∈ K + 1 λ − 1 K − K ⊂ K + t − 1 2 K − K . Conversely, let x ∈ t+1 2 K + t−1 2 −K. If x ∈ K, the result is obvious so we assume that x ∈ K. There exists b, c ∈ K such that x = t+1 2 c + t−1 2 −b. Since K is convex we deduce that the set [b, x] ∩ K is an interval with b as an endpoint. Since K is open there exists d ∈ R n such that [b, x] ∩ K = [b, d and we have c ∈ [b, d. Then |[b, x]| = kx − bk 2 = t + 1 2 kc − bk 2 t + 1 2 kd − bk 2 = t + 1 2 |K ∩ [b, x]| . Therefore x ∈ K t . If moreover K is centrally symmetric it is obvious that K t = t K. Remarks: 1 It is not difficult to see that if we only assume that K is convex and not necessarily open then the same proof shows actually that K t = relint K + t − 1 2 K − K = relint t + 1 2 K + t − 1 2 −K , where relintA is the relative interior of A, i.e. the interior of A relative to its affine hull. 2 The family of convex sets described by 8 where introduced by Hammer [H], they may be equivalently defined in the following way. Let us recall that the support function of a convex set K in the direction u ∈ S n−1 is defined by h K u = sup x∈K 〈x, u〉 and that an open convex set K is equal to the intersection of the open slabs containing it: K = \ u∈S n−1 x ∈ R n ; −h K −u 〈x, u〉 h K u . 2075 The width of K in direction u ∈ S n−1 is defined by w K u = h K u + h K −u. Then for every t ≥ 1, K t = \ u∈S n−1 x; −h K −u − t − 1 2 w K u 〈x, u〉 h K u + t − 1 2 w K u . Moreover, since this definition can be extended to the values t ∈ 0, 1, it enables thus to define the t-dilation of an open convex set for 0 t 1 and in the symmetric case, the equality K t = t K is still valid for t ∈ 0, 1. Using that the family of convex sets K t t is absorbing, Minkowski defined what is now called the generalized Minkowski functional of K: α K x = inf t 0; x ∈ K t Notice that α K is convex and positively homogeneous. If moreover K is centrally symmetric then K t = t K, which gives α K x = kxk K . We shall see in the next section how this notion was successfully used in polynomial approximation theory see for example [RS]. From Fact 1, Theorem 1 and Corollary 1, we deduce the following corollary. Corollary 2. Let K be a closed convex set in R n and t ≥ 1. Let s ∈ −∞, 1] and µ be a s-concave probability measure on R n . Denote by V the support of µ. i If µ K + t−1 2 K − K 1 then µK c ≥ 2 t + 1 µ K + t − 1 2 K − K c s + t − 1 t + 1 1 s . ii If s 0 then V ⊂ K + µK c s 1 − µK c s K − K iii If s 0 and K is centrally symmetric then V ⊂ 1 + µK c s 1 − µK c s K Applying iii to the uniform probability measure on V we deduce that for every closed convex sets V and K in R n , with K symmetric V ⊂ |V | 1 n + |V ∩ K c | 1 n |V | 1 n − |V ∩ K c | 1 n K.

2.3 Dilation of sublevel sets of the seminorm of vector valued polynomials

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52