K K 5K 4 10K

We use the convention that ∂ out C ∗ a = {a} for a white site a ∈ Z d . Hence, for a white it holds ¯ C ∗ a = {a}. Let us recall the first part of Proposition 3.1 in [AP]. To this aim, given x, y ∈ Z d , we write ax and a y for the unique sites in Z d such that x ∈ ∆

a,K

and y ∈ ∆

a,K

. We set n := |ax − a y| 1 and choose a macroscopic path A x, y = a , a 1 , . . . , a n with a = ax and a n = a y in particular, we require that |a i − a i+1 | ∞ = 1. We build the path A x, y in the following way: we start in ax, then we move by unitary steps along the line ax + Ze 1 until reaching the point a ′ having the same first coordinate as a y, then we move by unitary steps along the line a ′ + Ze 2 until reaching the point having the same first two coordinates as a y and so on. Then, Proposition 3.1 in [AP] implies for K large enough, as we assume that given any points x, y ∈ C α there exists a path γ x, y joining x to y inside C α such that γ x, y is contained in W x, y := ∪ a ∈A x, y ∪ w ∈ ¯ C ∗ a ∆

w,5K 4

. 5.8 These are the main results of [AP] that we will use below. Note that, since the sets ¯ C ∗ a can be arbitrarily large, the information that γ x, y ⊂ W x, y is not strong enough to allow to repeat the usual arguments in order to prove the Moving Particle Lemma, and therefore the Two Blocks Estimate. Hence, one needs some new ideas, that now we present. First, we isolate a set of bad points as follows. We fix a parameter L 0 and we define the subsets BL, BL ⊂ Z d as BL := {a ∈ Z d : |C ∗ a | L} , 5.9 BL := ∪ a ∈BL ∆

a,10K

. 5.10 Lemma 5.1. Given α in 0, α ], for Q–a.a. ω it holds lim sup N ↑∞,L↑∞ |BL ∩ Λ N | |Λ N | = 0 . 5.11 Proof. Since |BL ∩ Λ N | 6 cK|BL ∩ Λ N |, we only need to prove the thesis with BL replaced by BL. We introduce the nondecreasing function ρ L : N → [0, ∞ defined as ρ L n := In Ln. Then we can bound |BL ∩ Λ N | 6 X C ∗ ∈C ∗ : C ∗ ∩Λ N 6=; ρ L C ∗ . Since σ stochastically dominates the Bernoulli site percolation with law P ¯ pK and due to Lemma 2.3 in [DP], we conclude that Q |BL ∩ Λ N | a|Λ N | 6 Q X C ∗ ∈C ∗ : C ∩Λ N 6=; ρ L C ∗ a|Λ N | 6 P ¯ pK X C ∗ ∈C ∗ : C ∩Λ N 6=; ρ L C ∗ a|Λ N | 6 P X a ∈Λ N ρ L ˜ C ∗ a a|Λ N | , 5.12 278 where the random variables ˜ C ∗ a called pre–clusters are i.i.d. and have the same law of C ∗ under P ¯ pK . Their construction is due to Fontes and Newman [FN1], [FN2]. Due to formula 4.47 of [AP], E P ¯ pK |C ∗ | is finite for K large, in particular lim L ↑∞ E ρ L ˜ C ∗ = 0 . 5.13 By applying Cramér’s theorem, we deduce that P X a ∈Λ N ρ L ˜ C ∗ a 2Eρ L ˜ C ∗ |Λ N | 6 e −cLN d , for some positive constant cL and for all N 1. Hence, due to 5.12 and Borel–Cantelli lemma, we can conclude that for Q–a.a. ω it holds |BL ∩ Λ N ||Λ N | 6 2Eρ L ˜ C ∗ , ∀N N L, ω . At this point, the thesis follows from 5.13. At this point, due to the arguments leading to 5.5, we only need to prove the following: given α ∈ 0, α ] and A 0, for Q–a.a. ω it holds lim sup N ↑∞,ǫ↓0,ℓ↑∞,L↑∞ sup f ∈Υ ∗ C0,N Z 1 N d ǫN 2d ℓ d X x ∈Λ N X y ∈Λ x, ǫN X z ∈Λ x, ǫN : |z− y| ∞ 2 ℓ N Γ y, ℓ,α − N Γ z, ℓ,α I N Γ y, ℓ,α ∪ Γ z, ℓ,α 6 Aℓ d ∗ f ην ρ ∗ dη = 0 5.14 where Γ u, ℓ,α = Λ u, ℓ ∩ C α \ BL , u ∈ Z d . 5.15 Above we have used also that I N Λ y, ℓ ∪ Λ z, ℓ 6 Aℓ d ∗ 6 IN Γ y, ℓ,α ∪ Γ z, ℓ,α 6 Aℓ d ∗ . Note that in the integral of 5.14, the function f multiplies an F N –measurable function, where F N is the σ–algebra generated by the random variables {ηx : x ∈ G N } and G N is the set of good points define as G N := Λ N +1 ∩ C α \ BL . 5.16 Since D· is a convex functional see Corollary 10.3 in Appendix 1 of [KL], it must be Dν ρ ∗ f |F N 6 D f 6 C N d −2 . Hence, by taking the conditional expectation w.r.t. F N in 5.14, we conclude that we only need to prove 5.14 by substituting Υ ∗ C ,N with Υ ♯ C ,N defined as the family of F N –measurable functions f : N C ω → [0, ∞ such that ν f = 1 and D f 6 C N d −2 . Recall the definition of the function ϕ· given before 2.4. By the change of variable η → η − δ x one easily proves the identity ν ρ ∗ h g η x p f η x, y − p f η 2 i = ϕρ ∗ ν ρ ∗ h p f η x,+ − p f η y,+ 2 i , 5.17 279 where in general η z,+ denotes the configuration obtained from η by adding a particle at site z, i.e. η z,+ = η + δ z . Let us write ∇ x, y for the operator ∇ x, y h η := hη x,+ − hη y,+ . We can finally state our weak version of the Moving Particle Lemma: Lemma 5.2. For Q–a.a. ω the following holds. Fixed α ∈ 0, α ] and L 0, there exists a positive constant κ = κL, α such that ǫ −2 ϕρ ∗ N d ǫN 2d ℓ 2d ∗ X x ∈Λ N X y ∈Λ x, ǫN X z ∈Λ x, ǫN : |z− y| ∞ 2 ℓ X u ∈Γ y, ℓ,α X v ∈Γ z, ℓ,α ν ρ ∗ ∇ u,v p f 2 6 N 2 −d D f κ 6 C κ , 5.18 for any function f ∈ Υ ♯ C ,N and for any N , ℓ, C . Proof. Recall the definition of the path γ x, y given for x, y ∈ C α in the discussion before 5.8. Given a bond b non intersecting G N , since f is F N –measurable it holds ∇ b p f = 0. Using this simple observation, by a standard telescoping argument together with Schwarz inequality, we obtain that ν ρ ∗ ∇ u,v p f 2 6 n n −1 X i=0 I {u i , u i+1 } ∩ G N 6= ; o · n n −1 X i=0 ν ρ ∗ ∇ u i ,u i+1 p f 2 o , 5.19 where the path γ u,v is written as u = u , u 1 , . . . , u n = v. Recall that if ν ρ ∗ ∇ u i ,u i+1 p f 2 6= 0 then the set {u i , u i+1 } must intersect the set of good points G N defined in 5.16. If b is a bond of γ u,v , then b must be contained in the set W u,v defined in 5.8. In particular, there exists a ∈ A u,v and w ∈ ¯ C ∗ a such that b is contained in ∆

w,5K 4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52