that is, fx; Introduction

5 A well known means of measuring the quality of the estimator θ=tX ,X ,...,X_{n} 1.3 is to use the inequality of Cramér-Rao which states that, under certain regularity conditions for fx; θ more particularly, it requires the possibility of differentiating under the integral sign any unbiased estimator of g θ has variance which satisfies the following inequality Var t ≥ ] [ 2 θ θ X I n g ⋅ = θ I ] θ g [ n 2 , 1.4 where I X θ = dx θ ; x f θ θ ; x f ln 2 Ω ∫       ∂ ∂ = 1.6 = _ dx θ θ ; x f ln θ ; x f 1 2 Ω ∫       ∂ ∂ , 1.7 and I n θ = nE               ∂ ∂ 2 θ θ ; x f ln = n dx θ ; x f θ θ ; x f ln 2 Ω ∫       ∂ ∂ 1.8 The quantity I X θ is known as Fisher′s information measure and it measures the information about g θ which is contained in an observation of X. Also, the quantity I n θ = n.I X θ measures the information about gθ contained in a random sample S n X = X , X , ..., X n , then when X i , i = 1, n, are independent and identically distributed random variables with density fx; θ, θ ∈ D θ . An unbiased estimator of g θ that achieves this minimum from 1.5 is known as an efficient estimator. 2. Exponential Families of Distributions Let X be a random variable defined on a probability space Ω,K,P and its probability density function or probability function fx; θ which depends on an parameter or random parameter θ with values in a specified parameter space D θ , D θ ⊆

R, that is, fx;

θ is an member of the family {fx; θ ; θ ∈ D θ }. There is a special family of probability distributions, namely the exponential family of probability distributions. Definition 2.1 [8] A family of distribution with probability density function or probability function fx; θ; θ ∈ D θ , is sad to belong to the exponential family of 6 distributions the on-parameter exponential families if fx; θ can be expressed in the form fx; θ = cθhx exp       ∑ = k 1 i i i x t θ π , ∀ θ ∈ D θ , 2.1 for some measurable functions π i , t i , i = 1, k, and some integer k. Remark 2.1 The exponential families of distributions are frequently called the “Koopman - Pitman – Darmois” families of distributions from the fact that these three authors independently and almost simultaneously 1937-1938 studied their main properties. Remark 2.2 Examples of exponential families of distributions are: the binomial distributions Bin n, p with n known and 0 p 1, the Poisson distributions Poi λ, the negative binomial distributions Negbina, p with a known, the geometric distributions Geop, the normal distributions Nµ, σ² with θ = µ, σ², the gamma distributions Γa, b with θ = a, b, the chi-squared distribution χ n ², the exponential distribution Exp λ, and the beta distributions Betaα, β with θ = α, β. Remark 2.3 If each π i θ = π i , i = 1, k is taken to be a parameter in 2.1, so that fx; π = cπhx exp       ∑ = k 1 i i i x t π = = c πhx exp{πθ[Tx]’}, 2.2 where π = πθ = π ,π ,...,π k = π θ, π θ,..., π k θ ∈ R k 2.3 and Tx = t x,t x,...,t_{k}x, 2.4 we say that, for the exponential family, has been given its natural parameterization. Definition 2.2 [8] In an exponential family, the natural parameter is the vector 2.3, and Π = D π =         ∞       ∈ ∫ ∑ = dx x t π exp x h : R π S k 1 i i i k , 2.5 is called the natural parameter space, where S is the sample space, that is, the set of possible values for the random variable X. 7 Obviously, for any θ ∈ D θ, the point π θ,π θ,...,π k θ must lie in Π.

3. Definitions and properties for the bilateral truncated Gamma distributions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52