No multiple births, deaths or jumps

2.2.1 No multiple births, deaths or jumps

Let N = sup α,β∈X 2 N α, β: Proposition 2.7. If N = 1 then a change of at most one particle per time is allowed and Conditions 2.13 and 2.14 become e Π 0,1 α,β + e Γ 1 α,β ≤Π 0,1 γ,δ + Γ 1 γ,δ if β = δ and γ ≥ α, 2.15 e Π 0,1 α,β ≤Π 0,1 γ,δ if β = δ and γ = α, 2.16 e Π −1,0 α,β + e Γ 1 α,β ≥Π −1,0 γ,δ + Γ 1 γ,δ if γ = α and δ ≥ β, 2.17 e Π −1,0 α,β ≥Π −1,0 γ,δ if γ = α and δ = β. 2.18 Proof. . If β δ, then δ − β + j i ≥ δ − β + j 1 ≥ 1 for all K 0, 1 ≤ i ≤ K so that 1 ∈ I a by definition 2.9. Since N = 1 the left hand side of 2.13 is null; if β = δ the only case for which the left hand side of 2.13 is not null is j 1 = 0, which gives X k e Π 0,k α,β + X k ∈I a e Γ k α,β ≤ X l Π 0,l γ,β + X l ∈I b Γ l γ,β . Since N = 1, the value K = 1 covers all possible sets I a and I b , namely I a = {k : m 1 ≥ k 0} and I b = {γ − α + m 1 ≥ l 0}. If m 1 0, we get 2.15. If γ = α and m 1 = 0 we get 2.16. One can prove 2.17 in a similar way. If β = δ and γ ≥ α, Formula 2.15 expresses that the sum of the addition rates of the smaller process on y in state β must be smaller than the corresponding addition rates on y of the larger process on y in the same state. If β = δ and γ = α we also need that the birth rate of the smaller process on y is smaller than the one of the larger process, that is 2.16. Conditions 2.17–2.18 have a symmetric meaning with respect to subtraction of particles from x. Remark 2.8. If f S = S , when α = γ and β = δ conditions 2.16, 2.18 are trivially satisfied, and we only have to check 2.15 when α γ and 2.17 when β δ. Proposition 2.7 will be used in a companion paper for metapopulation models, see [3]. If R 0,k α,β = 0 for all α, β, k, the model is the reaction diffusion process studied by Chen see [4] and the attractiveness Conditions 2.15, 2.17 the only ones by Remark 2.8 reduce to Γ 1 α,β ≤ Γ 1 γ,β if γ α; Γ 1 α,δ ≥ Γ 1 α,β if δ β. In other words we need Γ 1 α,β to be non decreasing with respect to α for each fixed β, and non increasing with respect to β for each fixed α. In [4], the author introduces several couplings in order to find ergodicity conditions of reaction diffusion processes. All these couplings are identical to the coupling H introduced in Section 3.2 and detailed in Appendix A if N = 1, on configurations where an addition or a subtraction of particles may break the partial order, but differ from H on configurations where it cannot happen. 113

2.2.2 Multitype contact processes

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52