Capacity Estimates Uniform control in large dimensions for capacities

which is finite if K q is finite. Therefore, kxNzk p p ≤ δ p N q−1 p q C p q D p q , 4.22 which gives us the result since q − 1 p q = 1. We have all what we need to estimate the capacity.

4.1.2 Capacity Estimates

Let us now prove our main theorem. Proposition 4.3. There exists a constant A, such that, for all ǫ ǫ and for all N , cap € B N + , B N − Š N N 2−1 = ǫ p 2 πǫ N −2 1 p | det∇F γ,N 0| 1 + Rǫ, N , 4.23 where |Rǫ, N| ≤ A p ǫ| ln ǫ| 3 . The proof will be decomposed into two lemmata, one for the upper bound and the other for the lower bound. The proofs are quite different but follow the same idea. We have to estimate some integrals. We isolate a neighborhood around the point O of interest. We get an approximation of the potential on this neighborhood, we bound the remainder and we estimate the integral on the suitable neighborhood. In what follows, constants independent of N are denoted A i . Upper bound. The first lemma we prove is the upper bound for Proposition 4.3. Lemma 4.4. There exists a constant A such that for all ǫ and for all N , cap € B N + , B N − Š N N 2−1 ≤ ǫ p 2 πǫ N −2 1 p | det∇F γ,N 0| € 1 + A ǫ| ln ǫ| 2 Š . 4.24 Proof. This lemma is proved in [5] in the finite dimension setting. We use the same strategy, but here we take care to control the integrals appearing uniformly in the dimension. We will denote the quadratic approximation of e G γ,N by F , i.e. F z = N −1 X k=0 λ k,N |z k | 2 2 = − z 2 2 + N −1 X k=1 λ k,N |z k | 2 2 . 4.25 On C δ , we can control the non-quadratic part through Lemma 4.2. Lemma 4.5. There exists a constant A 1 and δ , such that for all N , δ δ and all z ∈ C δ , e G γ,N z − F z ≤ A 1 δ 4 . 4.26 335 Proof. Using 4.11, we see that e G γ,N z − F z = 1 4N kxNzk 4 4 . 4.27 We choose a sequence ρ k k ≥1 such that K 4 3 is finite. Thus, it follows from Lemma 4.2, with A 1 = 1 4 B 4 , that e G γ,N z − 1 2 N −1 X k=0 λ k,N |z k | 2 ≤ A 1 δ 4 , 4.28 as desired. We obtain the upper bound of Lemma 4.4 by choosing a test function h + . We change coordinates from x to z as explained in 4.10. A simple calculation shows that k∇hxk 2 2 = N −1 k∇˜hzk 2 2 , 4.29 where ˜hz = hxz under our coordinate change. For δ sufficiently small, we can ensure that, for z 6∈ C δ with |z | ≤ δ, e G γ,N z ≥ F z = − z 2 2 + 1 2 N −1 X k=1 λ k,N |z k | 2 ≥ − δ 2 2 + 2δ 2 ≥ δ 2 . 4.30 Therefore, the strip S δ ≡ {x| x = xNz, |z | δ} 4.31 separates R N into two disjoint sets, one containing I − and the other one containing I + , and for x ∈ S d \ C δ , G γ,N x ≥ δ 2 . The complement of S δ consists of two connected components Γ + , Γ − which contain I + and I − , respectively. We define ˜h + z =        1 for z ∈ Γ − for z ∈ Γ + f z for z ∈ C δ arbitrary on S δ \ C δ but k∇h + k 2 ≤ c δ . , 4.32 where f satisfies f δ = 0 and f −δ = 1 and will be specified later. Taking into account the change of coordinates, the Dirichlet form 2.9 evaluated on h + provides the upper bound Φh + = N N 2−1 ǫ Z zB N − ∪B N + c e − e G γ,N zǫ k∇˜h + zk 2 2 dz 4.33 ≤ N N 2−1  ǫ Z C δ e − e G γ,N zǫ f ′ z 2 dz + ǫδ −2 c 2 Z S δ \C δ e − e G γ,N zǫ dz   . 336 The first term will give the dominant contribution. Let us focus on it first. We replace e G γ,N by F , using the bound 4.26, and for suitably chosen δ, we obtain Z C δ e − e G γ,N zǫ f ′ z 2 dz ≤ ‚ 1 + 2A 1 δ 4 ǫ Œ Z C δ e −F zǫ f ′ z 2 dz = ‚ 1 + 2A 1 δ 4 ǫ Œ Z D δ e − 1 2 ǫ P N −1 k=1 λ k,N |z k | 2 dz 1 . . . dz N −1 × Z δ −δ f ′ z 2 e z 2 2ǫ dz . 4.34 Here we have used that we can write C δ in the form [ −δ, δ] × D δ . As we want to calculate an infimum, we choose a function f which minimizes the integral R δ −δ f ′ z 2 e z 2 2ǫ dz . A simple computation leads to the choice f z = R δ z e −t 2 2ǫ d t R δ −δ e −t 2 2ǫ d t . 4.35 Therefore Z C δ e − e G γ,N zǫ f ′ z 2 dz ≤ R C δ e − 1 2 ǫ P N −1 k=0 |λ k,N ||z k | 2 dz R δ −δ e − 1 2 ǫ z 2 dz 2 ‚ 1 + 2A 1 δ 4 ǫ Œ . 4.36 Choosing δ = p K ǫ| ln ǫ|, a simple calculation shows that there exists A 2 such that R C δ e − 1 2 ǫ P N −1 k=0 |λ k,N ||z k | 2 dz R δ −δ e − 1 2 z 2 ǫ dz 2 ≤ p 2 πǫ N −2 1 p | det∇F γ,N 0| 1 + A 2 ǫ. 4.37 The second term in 4.33 is bounded above in the following lemma. Lemma 4.6. For δ = p K ǫ| lnǫ| and ρ k = 4k α , with 0 α 14, there exists A 3 ∞, such that for all N and 0 ǫ 1„ Z S δ \C δ e − e G γ,N zǫ dz ≤ A 3 p 2 πǫ N −2 Æ |det € ∇ 2 F γ,N O Š | ǫ 3K 2+1 . 4.38 Proof. Clearly, by 4.11, e G γ,N z ≥ − z 2 2 + 1 2 N −1 X k=1 λ k,N |z k | 2 . 4.39 337 Thus Z S δ \C δ e − e G γ,N zǫ dz ≤ Z δ −δ dz Z ∃ N −1 k=1 : |z k |≥δr k,N p λ k,N dz 1 . . . dz N −1 e − 1 2 ǫ P N −1 k=0 λ k,N |z k | 2 ≤ Z δ −δ e +z 2 2ǫ dz N −1 X k=1 Z |z k |≥δr k,N p λ k,N e −λ k,N |z k | 2 2ǫ dz k × Y 1 ≤i6=k≤N−1 Z R e −λ i,N |z i | 2 2ǫ dz i ≤ 2e δ 2 2ǫ r 2 ǫ π v u u t N −1 Y i=1 2 πǫλ −1 i,N N −1 X k=1 r −1 k,n e −δ 2 r 2 k,N 2ǫ . 4.40 Now, N −1 X k=1 r −1 k,N e −δ 2 r 2 k,N 2ǫ = ⌊ N 2 ⌋ X k=1 r −1 k,N e −δ 2 r 2 k,N 2ǫ + N −1 X k= ⌊ N 2 ⌋+1 r −1 N −k,N e −δ 2 r 2 N −k,N 2ǫ ≤ 2 ∞ X k=1 ρ −1 k e −δ 2 ρ 2 k 2ǫ . 4.41 We choose ρ k = 4k α with 0 α 14 to ensure that K 4 3 is finite. With our choice for δ, the sum in 4.41 is then given by 1 4 ∞ X n=1 n −α ǫ 8K n 2 α ≤ 1 4 ǫ 2K ∞ X n=1 ǫ 6K n 2 α ≤ Cǫ 2K , 4.42 since the sum over n is clearly convergent. Putting all the parts together, we get that Z S δ \C δ e − e G γ,N zǫ dz ≤ Cǫ 3K 2+1 p 2 πǫ N −2 1 Æ |det € ∇ 2 F γ,N O Š | 4.43 and Lemma 4.6 is proven. Finally, using 4.36, 4.33, 4.37, and 4.38, we obtain the upper bound Φh + N N 2−1 ≤ ǫ p 2 πǫ N −2 p | det∇F γ,N 0| 1 + A 2 ǫ € 1 + 2A 1 ǫ| ln ǫ| 2 + A ′ 3 ǫ 3K 2 Š 4.44 with the choice ρ k = 4k α , 0 α 14 and δ = p K ǫ| ln ǫ|. Note that all constants are independent of N . Thus Lemma 4.4 is proven. 338 Lower Bound The idea here as already used in [6] is to get a lower bound by restricting the state space to a narrow corridor from I − to I + that contains the relevant paths and along which the potential is well controlled. We will prove the following lemma. Lemma 4.7. There exists a constant A 4 ∞ such that for all ǫ and for all N, cap € B N + , B N − Š N N 2−1 ≥ ǫ p 2 πǫ N −2 1 p | det∇F γ,N 0| 1 − A 4 p ǫ| ln ǫ| 3 . 4.45 Proof. Given a sequence, ρ k k ≥1 , with r k,N defined as in 4.16, we set b C δ = n z ∈] − 1 + ρ, 1 − ρ[, |z k | ≤ δ r k,N p λ k,N o . 4.46 The restriction |z | 1−ρ is made to ensure that b C δ is disjoint from B ± since in the new coordinates 4.10 I ± = ±1, 0, . . . , 0. Clearly, if h ∗ is the minimizer of the Dirichlet form, then cap € B N − , B N + Š = Φh ∗ ≥ Φ b C δ h ∗ , 4.47 where Φ b C δ is the Dirichlet form for the process on b C δ , Φ b C δ h = ǫ Z b C δ e −G γ,N xǫ k∇hxk 2 2 d x = N N 2−1 ǫ Z z b C δ e − e G γ,N zǫ k∇˜hzk 2 2 d x. 4.48 To get our lower bound we now use simply that k∇˜hzk 2 2 = N −1 X k=0 ∂ ˜h ∗ ∂ z k 2 ≥ ∂ ˜h ∗ ∂ z 2 , 4.49 so that Φh ∗ N N 2−1 ≥ ǫ Z z b C δ e − e G γ,N zǫ ∂ ˜h ∗ ∂ z z 2 dz = e Φ b C δ ˜h ∗ ≥ min h ∈H e Φ b C δ ˜h. 4.50 The remaining variational problem involves only functions depending on the single coordinate z , with the other coordinates, z ⊥ = z i 1 ≤i≤N−1 , appearing only as parameters. The corresponding minimizer is readily found explicitly as ˜h − z , z ⊥ = R 1 −ρ z e e G γ,N s,z ⊥ ǫ ds R 1 −ρ −1+ρ e e G γ,N s,z ⊥ ǫ ds 4.51 and hence the capacity is bounded from below by cap € B N − , B N + Š N N 2−1 ≥ e Φ b C δ ˜h − = ǫ Z b C ⊥ δ Z 1 −ρ −1+ρ e e G γ,N z ,z ⊥ ǫ dz −1 dz ⊥ . 4.52 Next, we have to evaluate the integrals in the r.h.s. above. The next lemma provides a suitable approximation of the potential on b C δ . Note that since z is no longer small, we only expand in the coordinates z ⊥ . 339 Lemma 4.8. Let r k,N be chosen as before with ρ k = 4k α , 0 α 14. Then there exists a constant, A 5 , and δ 0, such that, for all N and δ δ , on b C δ , e G γ,N z − − 1 2 z 2 + 1 4 z 4 + 1 2 N −1 X k=1 λ k,N |z k | 2 + z 2 f z ⊥ ≤ A 5 δ 3 , 4.53 where f z ⊥ ≡ 3 2 N −1 X k=1 |z k | 2 . 4.54 Proof. We analyze the non-quadratic part of the potential on b C δ , using 4.11 and 4.3 1 N kxNzk 4 4 = 1 N N −1 X i=0 |x i N z| 4 = 1 N N −1 X i=0 z + N −1 X k=1 ω ik z k 4 = z 4 N N −1 X i=0 |1 + u i | 4 4.55 where u i = 1 z P N −1 k=1 ω ik z k . Note that P N −1 i=0 u i = 0 and u = 1 z x N 0, z ⊥ and that for z ∈ e R N , u i is real. Thus N −1 X i=0 |1 + u i | 4 = N + N −1 X i=0 € 6u 2 i + 4u 3 i + u 4 i Š , 4.56 we get that 1 N kxNzk 4 4 − z 4 1 + 6 N 2 X i=0 u 2 i ≤ z 4 N € 4 kuk 3 3 + kuk 4 4 Š . 4.57 A simple computation shows that 6 N X i 2u 2 i = 6 z 2 X k 6=0 |z k | 2 . 4.58 Thus as |z | ≤ 1, we see that 1 N kxNzk 4 4 − z 4 − 6z 2 X k 6=0 |z k | 2 ≤ 1 N 4 kxN0, z ⊥ k 3 3 + kxN0, z ⊥ k 4 4 . 4.59 Using again Lemma 4.2, we get kxN0, z ⊥ k 3 3 ≤ B 3 N δ 3 4.60 kxN0, z ⊥ k 4 4 ≤ B 4 N δ 4 . Therefore, Lemma 4.8 is proved, with A 5 = 4B 3 + B 4 δ . We use Lemma 4.8 to obtain the upper bound Z 1 −ρ −1+ρ e e G γ,N z ,z ⊥ ǫ dz ≤ exp 1 2 ǫ P k 6=0 λ k,N |z k | 2 + A 5 δ 3 ǫ gz ⊥ , 4.61 340 where gz ⊥ = Z 1 −ρ −1+ρ exp −ǫ −1 1 2 z 2 − 1 4 z 4 − z 2 f z ⊥ dz . 4.62 This integral is readily estimate via Laplace’s method as gz ⊥ = p 2 πǫ p 1 − 2 f z ⊥ 1 + Oǫ = p 2 πǫ € 1 + O ǫ + Oδ 2 Š . 4.63 Inserting this estimate into 4.52, it remains to carry out the integrals over the vertical coordinates which yields e Φ b C δ ˜h − ≥ ǫ Z b C ⊥ δ exp − 1 2 ǫ N −1 X k=1 λ k,N |z k | 2 − A 5 δ 3 ǫ 1 p 2 πǫ € 1 + O ǫ + Oδ 2 Š dz ⊥ = Ç ǫ 2 π Z b C ⊥ δ exp − 1 2 ǫ N −1 X k=1 λ k,N |z k | 2 dz ⊥ € 1 + O ǫ + Oδ 2 + Oδ 3 ǫ Š . 4.64 The integral is readily bounded by Z b C ⊥ δ exp − 1 2 ǫ N −1 X k=1 λ k,N |z k | 2 dz ⊥ ≥ Z R N −1 exp − 1 2 ǫ N −1 X k=1 λ k,N |z k | 2 dz ⊥ − N −1 X k=1 Z R dz 1 . . . Z |z k |≥δr k,N p λ k,N . . . Z R dz N −1 exp − 1 2 ǫ N −1 X k=1 λ k,N |z k | 2 ≥ p 2 πǫ N −1 N −1 Y i=1 p λ i,N −1 1 − r 2 ǫ π δ −1 N −1 X k=1 r −1 k,N e −δ 2 r 2 k,N 2ǫ = p 2 πǫ N −1 1 p |det F γ,N O| € 1 + O ǫ K Š , 4.65 when δ = p K ǫ ln ǫ and Oǫ K uniform in N . Putting all estimates together, we arrive at the assertion of Lemma 4.7.

4.2 Uniform estimate of the mass of the equilibrium potential

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52