Preliminary calculations getdoc44a3. 260KB Jun 04 2011 12:04:19 AM

To shorten notation, write N instead of N Ξ . Note that the function v is the unique solution of the following integral equation logvt − logvz + Z t z ψvr vr d r = 0, ∀0 z t, 30 with the “initial condition” v0+ = ∞. If Ξ can be identified with a probability measure Λ on [0, 1] as in 4, then 30 is identical to the starting observation in the proof of Theorem 10 for Λ-coalescents cf. proof of [4] Theorem 1. Indeed, the rest of the argument is analogous to the one from [4] for Λ-coalescents, the general regular Ξ-coalescent setting being only slightly more complicated. The few points of difference will be treated in detail, while the rest of the argument is only sketched.

4.1 Preliminary calculations

Assume that the given Ξ-coalescent has a finite number of blocks at some positive time z. Consider the process M t := logN t − logN z + Z t z ψN r N r d r, t ≥ z. Let n ≥ 1 be fixed. Define τ n := inf{s 0 : N s ≤ n }. 31 It turns out that, under the regularity hypothesis R, M t ∧ τ n is “almost” up to a bounded drift correction a local martingale, with respect to the natural filtration F t , t ≥ 0 generated by the underlying Ξ-coalescent process. Proposition 17. There exists some deterministic n ∈ N and C ∞ such that E[d logN s|F s ] = − ψN s N s + hs ds, 32 where hs, s ≥ z is an F -adapted process such that sup s∈[z,z∧ τ n0 ] |hs| ≤ C, and E[[d logN s] 2 |F s ]1 {s≤τ n0 } ≤ C ds, almost surely. Both estimates are valid uniformly over z 0. Restricting the analysis to n larger than n is a consequence of the following estimate, whose proof is given immediately after the proof of the proposition. Recall Y n ℓ defined in 11. When taking probabilities or expectations with respect to the joint law of Y n ℓ , ℓ ≥ 1, we include subscript x to indicate the dependence of the law on x. Define S x := ∞ X i=1 x 2 i + ∞ X i=1 x i 2 . 233 Lemma 18. There exists n ∈ N and C ∞ such that for all n ≥ n and all x ∈ ∆ 3 4 , we have E x log  n − ∞ X ℓ=1 Y n ℓ − 1 {Y n ℓ 0}  − log n + P ∞ ℓ=1 nx ℓ − 1 + 1 − x ℓ n n ≤ C S x, and E x log  n − ∞ X ℓ=1 Y n ℓ − 1 {Y n ℓ 0}  − log n 2 ≤ C S x. Proof. [of Proposition 17] Since R holds, it suffices to show that for each s 0, we have on {N s ≥ n } Ed logN s|F s ds + ψN s N s = |hs| = O ‚Z ∆ 3 4 S x P ∞ i=1 x 2 i Ξdx Œ , 33 and E[d logN s] 2 |F s = O ‚Z ∆ 3 4 S x P ∞ i=1 x 2 i Ξdx Œ ds, 34 where O· can be taken uniformly in s. Note that the finite integrals above are in fact taken over ∆, since Ξ is supported on ∆ 3 4 . Recall the PPP construction of Section 2.4 and fix n ≥ n . On the event {N s = n}, an atom carrying value x ∈ ∆ arrives at rate 1 P ∞ i=1 x 2 i Ξdx ds, and given its arrival, log N s = log n jumps to logn − P ∞ ℓ=1 Y n ℓ − 1 {Y n ℓ 0} . Therefore, Ed logN s|F s = Z ∆ E x   log n − P ∞ ℓ=1 Y n ℓ − 1 {Y n ℓ 0} n    1 P ∞ i=1 x 2 i Ξdx ds. Due to Lemma 18 and 23 we can now derive 33. To bound the infinitesimal variance on the event {N s = n}, use the second estimate in Lemma 18, together with the fact E[d logN s] 2 |F s ds ≤ Z ∆ E x   log 2    n − P ∞ ℓ=1 Y n ℓ − 1 {Y n ℓ 0} n       1 P ∞ i=1 x 2 i Ξdx. Finally, note that both 33 and 34 are uniform upper bounds over s. Proof. [of Lemma 18] The argument is almost the same as that for [4] Lemma 19 in the Λ-coalescent setting. Since the regularity “dichotomy” is a consequence of some more complicated expressions arising in the calculations in the current setting, most of the steps are included. Abbreviate Z n := P ∞ ℓ=1 Y n ℓ − 1 {Y n ℓ 0} n , 234 and note that Z n is stochastically bounded by a Binomialn, P i x i random variable. Let T ≡ T n := log € 1 − Z n Š . Split the computation according to the event A n = {Z n ≤ 12}, whose complement has probability bounded by exp −n 1 2 log 1 2p + 1 2 log 1 21 − p = 2 n p n 2 1 − p n 2 , uniformly in p := P i x i ≤ 14 and n, due to a large deviation bound for sums of i.i.d. Bernoulli random variables. On A c n we have |T | ≤ log n, and on A n we apply a calculus fact, | log1− y+ y| ≤ y 2 21− y ≤ y 2 , y ∈ [0, 1 2], to obtain E[T ] + E ” Z n 1 A n — ≤ log nPA c n + E ” Z n 2 1 A n — . Since Z n ≤ 1, we conclude E[T ] + E[Z n ] ≤ log n + 1PA c n + E[Z n 2 ]. Note that |E[T ] + E[Z n ]| is precisely the left-hand side of the first estimate stated in the lemma. Due to the estimate 52 in the proof of [4] Lemma 19 we have log nPA c n ≤ log n2 n p n 2 1 − p n 2 ≤ C p 2 C Sx, for some C ∞, all p ∈ [0, 14], and all n large. Until this point the argument is identical to the one for Λ-coalescents. The new step is verifying that E[Z n 2 ] ≤ Sx. 35 It is easy to check see for example [4] Corollary 18 that E[Y n ℓ − 1 {Y n ℓ 0} 2 ] ≤ C n 2 x ℓ 2 , 36 for some constant C ∞. For two different indices k, ℓ, use Cauchy-Schwartz inequality together with the above bound to get |E[Y n k − 1 {Y n k 0} Y n ℓ − 1 {Y n ℓ 0} ]| ≤ p C 2 n 4 x k 2 x ℓ 2 = C n 2 x k x ℓ . 37 One obtains 35 from 36–37 after rewriting E[Z n 2 ] as 1 n 2   X ℓ E[Y n ℓ − 1 {Y n ℓ 0} 2 ] + X k X ℓ6=k E[Y n ℓ − Y n ℓ 0Y n k − 1 {Y n k 0} ]   . The second estimate is proved exactly as in [4]. Remark 19. The expectation of the product of Y n k − 1 {Y n k 0} and Y n ℓ − 1 {Y n ℓ 0} can be computed explicitly, and one can verify that its absolute value has the order of magnitude n 2 x k x ℓ as x k and or x ℓ tend to 0. 235

4.2 Proof of Theorem 10

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52