Preliminaries getdoc5e4f. 263KB Jun 04 2011 12:04:25 AM

481 Given Zt = z ∈ {0, 1} T h and u ∈ T h \ T h+1 with z u = 1, it jumps to ez v v ∈T , given by ez v =    0, v = u, 1, v = u0 or v = u1, z v , else, at rate r c −|u| . Note that vertices u ∈ T h+1 do not split. Informally, every external vertex u in this process represents a cell. If |u| = n, we say that the cell is in generation n. The process starts with a single mother cell. It proliferates at rate r. All cells up to generation h from the mother cell follow the usual dynamics of the Aldous-Shields model with time rescaled by a factor of r, such that cells in generation n proliferate at rate r · c −n . If a cell is in generation h + 1 from the mother cell, its telomeres have reached the Hayflick limit and the cell is not able to proliferate any more. Definition 3.2 Relative frequency of proliferating cells. In applications, the relative frequency of proliferating cells, Lt := Z p t Z p t + Z s t 3.1 with Z p t := X u ∈T h \T h+1 Z u t, Z s t := X u ∈T h+1 Z u t, is of particular importance. Here, Z p t and Z s t is the number of proliferating and senescent cells at time t, respectively. Theorem 2 Frequency of replicating cells. For Z and L as in Definition 3.1 and 3.2, lim h →∞ Lt c h = P ∞ i=0 P ∞ k=0 2 −i a k e −c i+k tr P ∞ i=0 P ∞ k=0 a k 2 −i e −c i+k tr + 2e −c −i−1+k tr 3.2 in probability, for all t 0. Remark 3.3 Simulations. In our model for cellular senescence, Theorem 2 describes the de- crease in the frequency of proliferating cells. This frequency has been measured empirically; see e.g. [4, Figure 5] and [3, Figure 2]. As can be seen from the Theorem, every c gives a specific curve of decrease; see also Figure 2. These curves can be fit to data in order to estimate c. As the figure shows, the limiting result of Theorem 2 already gives a good fit for simulations which use h = 20. 4 Proof of Theorem 1

4.1 Preliminaries

The key ingredient in the proof is the quantity y n t := E[Y n t] with 0 n := 0 · · · 0 | {z } n times . 4.1 482 4 PROOF OF THEOREM ?? Figure 2: The decrease of the frequency of proliferating cells strongly depends on c. The figure shows simulations for c = 1.2, 1.3, 1.5 and h = 20. The grey lines show the limit result 3.2 from Theorem 2 with r = 1. Note that the dynamics of Y n n=0,1,2,... taking values in {0, 1} {0,1,2,...} with only one entry being 1 is autonomous. It is given by the following rule: if Y n t = 1, then, at rate c −n a transition occurs to the configuration Y n t = 0, Y n+1 t = 1. From the dynamics of the Aldous-Shields model, it is clear that yt = y n t n=0,1,2,... follows the differential equations ˙ y n = c −n−1 y n −1 − c −n y n , n ≥ 0 4.2 with y −1 = 0; compare 2.1 in [AS]. We rewrite the equation to obtain ˙y = C y with C =           −1 1 −c −1 c −1 −c −2 c −2 −c −3 c −3 −c −4 c −4 −c −5 · · · · · ·           Our first Lemma provides essential facts about the matrix C. Recall a k and b k from 2.3. Lemma 4.1. Let A = a i j i, j=0,1,2,... and B = b i j i, j=0,1,2,... be given by a i j := a i − j , b i j := b i − j . The matrix A contains the eigenvectors of C to the eigenvalues λ i = −c −i , i = 0, 1, 2, ... and A and B are inverse to each other.

4.1 Preliminaries

483 Proof. To see that A contains the eigenvectors of C, note that for i ≥ j CA i j = c −i+1 a i −1− j − c −i a i − j = c −i+1 1 − c i − j c − c −i a i − j = −c − j a i − j . To see that A and B are inverse to each other, it follows from the definition of a k and b k that BA ii = a · b = 1 and BA i j = 0 for i j. For i j, we set n := i − j 0 and obtain BA i j = i X k= j b i −k a k − j = n+ j X k= j b j+n −k a k − j = n X k=0 b n −k a k = n X k=0 −1 k c · · · c n −k · c k c − 1 · · · c n −k − 1 · c − 1 · · · c k − 1 = c n c − 1 · · · c n − 1 n X k=0 −1 k c 1+ ···+n−k−1 c − 1 · · · c n −k − 1 c k+1 − 1 · · · c n − 1 = −c n c − 1 · · · c n − 1 n X k=0 −1 k c k 2 c − 1 · · · c k − 1 c n −k+1 − 1 · · · c n − 1, where we have reversed the order of the summands in the last equality. We rewrite the product c l − 1 · · · c l ′ − 1 = l ′ Q j=l c j − 1 = 1 for l l ′ and claim that for all n 0 n X k=0 −1 k c k 2 c − 1 · · · c k − 1 c n −k+1 − 1 · · · c n − 1 = 0 4.3 which implies that A and B are inverse to each other. We use induction and note that the assertion is clear for n = 1. Given it is true for n, we have n+1 X k=0 −1 k c k 2 c − 1 · · · c k − 1 c n −k+2 − 1 · · · c n+1 − 1 = 1 + n+1 X k=1 −1 k c k 2 c − 1 · · · c k − 1 c n −k+2 − 1 · · · c n − 1[c n+1 − c n+1 −k + c n −k+1 − 1] = n+1 X k=1 −1 k c k 2 c − 1 · · · c k − 1 c n+1 −k c k − 1c n −k+2 − 1 · · · c n − 1 = − n+1 X k=1 −1 k −1 c k −1 2 c k c − 1 · · · c k −1 − 1 c n+1 c −k c n −k+2 − 1 · · · c n − 1 = −c n+1 n+1 X k=1 −1 k −1 c k −1 2 c − 1 · · · c k −1 − 1 c n −k−1+1 − 1 · · · c n − 1 = 0 where we have used the induction hypothesis in the second and in the last equality. Hence, we have shown 4.3 and the proof is complete. 484 4 PROOF OF THEOREM ?? 4.2 First order structure; proof of 2.4 By linearity, we can now explicitly solve 4.2 using Lemma 4.1. Since A contains the eigenvalues of C and A is inverse to B, we immediately write, using yt := y t, y 1 t, y 2 t, ... and D := diag −1, −c −1 , −c −2 , ... 2 −n E [X n t] n=0,1,2,... = yt = e C t y0 † = Ae Dt B y0 † = Ae Dt b , b 1 , ... † = n X k=0 a n −k b k e −c −k t n=0,1,2,... because z0 = 1, 0, 0, ... as the process starts with Y 0 = 1 u= ; u ∈T . We have shown the first part of 2.4 and in order to prove the second part, fix i, k, t and note that n 7→ |a k |b n+i −k e −c −i+k t is increasing with a summable limit. Hence, by dominated convergence, y n+i t c n = ∞ X k=0 a k b n+i −k e −c −n−i+k t c n n →∞ ≈ b ∞ ∞ X k=0 a k e −c −i+k t . 4.3 Second order structure; proof of 2.5 Now we come to the second order structure. Similar to the definition of y n in 4.1, we set for n ≤ n ′ y n,n ′ ,m t := COV[Y n t, Y m 1 n′ −m t] with 0 m 1 n ′ −m := 0 · · · 0 | {z } m times 1 · · · 1 | {z } n ′ −m times . In order to see the connection of y n,n ′ ,m t and COV[X n t, X n ′ t], we define the depth of the most recent common ancestor of u, u ′ as M u,u ′ := sup {|v| : v u, v u ′ }, u, u ′ ∈ T, where v u if v ≺ u or v = u. Let U, U ′ be two random variables, where U is uniformly distributed on T n and U ′ uniformly distributed on T n ′ , independent of all the rest. The distribution of M U,U ′ is given by recall n ≤ n ′ P [M U,U ′ = m] = 2 −m+1∧n , m = 0, ..., n. We write COV [X n t, X n ′ t] = X u ∈T n X u ′ ∈T n′ E [Y u tY u ′ t] − E[Y u t] · E[Y u ′ t] = 2 n+n ′ COV [Y U t, Y U ′ t] = 2 n+n ′ E COV [Y U t, Y U ′ t|M U,U ′ ] + COV E [Y U |M U,U ′ ], E[Y U ′ |M U,U ′ ] = 2 n+n ′ E COV [Y U t, Y U ′ t|M U,U ′ ] = 2 n+n ′ n X m=0 2 −m+1∧n y n,n ′ ,m t. 4.4 The second to last equality holds as E[Y U |M U,U ′ ] = E[Y U ] and E[Y U ′ |M U,U ′ ] = E[Y U ′ ]. In order to use the last expression, note that for y n,n ′ ,m the vertices 0 n and 0 m 1 n ′ −m have the vertex 0 m as 4.3 Second order structure; proof of 2.5 485 their most recent common ancestor and so M n ,0 m 1 n′ −m = m. We let T m be the last time when Y m is external, equivalently the time when Y m+1 becomes external, i.e. T m is the sum of exponentials with parameters 1, c −1 , c −2 , ..., c −m . Hence, E [e −λT m ] = m Y l=1 c −l c −l + λ = m Y l=1 1 1 + λc l . 4.5 Using the last equations we now prove 2.5 in three steps. First, we give a representation of y n,n ′ ,m in terms of a functional of T m . Second, we derive the asymptotics of y n+i,n+i ′ ,m t c n for large n using this representation. Last, we plug this asymptotics into 4.4. Step 1 Exact representation of y n,n ′ ,m

t. In this step we show that for m n ≤ n

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52