MATERI PEMBELAJARAN KELAS XII IPA

(1)

MATERI PEMBELAJARAN KELAS XII IPA

Semester 1

BAB I

INTEGRAL

Integral adalah lawan (invers) dari diferensial (turunan).

RUMUS – RUMUS INTEGRAL:

1.

adx

=

ax

+

c ,

(

c

=

kons

tan

ta

)

2.

x

n

dx

=

1

n

+

1

x

n+1

+

c ,n

1

3.

1

x

dx

=

ln

x

+

c

4 .

f

'

{

g

(

x

)

}

.

g'

(

x

)

dx

=

f

{

g

(

x

)

}

.

g '

(

x

)

g '

(

x

)

=

f

{

g

(

x

)

}

+

c

5.

cos

xdx

=

sin

x

+

c

sin

xdx

=−

cos

x

+

c

INTEGRAL TERTENTU

Jika

f

(

x

)

dx

=

g

(

x

)

, maka

a b

f(x)dx=g(x)|ab=g(b)−g(a)

SIFAT-SIFAT:

1.

a b

f(x)dx=−

b a

f(x)dx 2.

a c

f(x)dx=

b c

f(x)dx+

a b

f(x)dx , abc 3 .

cf(x)dx=c

f(x)dx

4 .

{

f(xg(x)

}

dx=

f(x)dx±

g(x)dx 5 .

sin(ax+b)dx=−1acos(ax+b)+c 6 .

cos(ax+b)dx=1a sin(ax+b)+c

CARA PENGINTEGRALAN 1. Substitusi


(2)

I =

f

(

x

)

dx

substitusi : x = Q(u) ; dx = Q`(u) du

I =

f(Q(u)) Q`(u) du

jika ruas kanan telah diintegralkan, subtitusi kembali dengan fungsi invers dari x = Q(u) (ket : Prinsipnya adalah merubah variabel sehingga rumus dapat digunakan).

2. Substitusi Trigonometri

a. Bentuk

a

2

x

2

a2x2dx=1

2a

2arcsin x

a+ 1 2x

a

2+x2+c

b. Bentuk

a

2

+

b

2

x

2

Gunakan substitusi : x = a/b tg θ

dx = a/b sec2 θ d θ

c. Bentuk

b

2

x

2

a

2

Gunakan substitusi : x = a/b sec θ dx = a/b tg θ sec2 θ

3. Parsial

Yaitu mengenai integral dari suatu bentuk yang merupakan hasil perkalian antara suatu fungsi x dengan turunan dari suatu fungsi x yang lain.

I = f(x) g(x) dx

Misalkan : u = f(x) ; dv = g(x) dx

du = ... dx ; v = g(x) dx = ... maka : u du= u v - v du

Pemisalan dibuat sedemikian sehingga bentukv du jadi lebih mudah

Untuk hal-hal khusus dapat digunakan cara TABULASI. Contoh Soal:

1.

4x

2dx

=43x3+c

2.

sin(2x+7)=−

1

2cos(2x+7)+c

3(5x4−3x2)dx=

3

(5x4)dx

3


(3)

=

x

5

|

1 3

x

3

|

1

3

=(

3

5

1

3

)−(

3

3

1

3

)=

216

Penggunaan Integral

1. Untuk menghitung luas daerah.

a. Luas daerah yang dibatasi oleh Kurve F(x) , sumbu x dari x = a s.d x = b adalah:

Luas (L) = x

=a x=b

F

(

x

)

dx

b. Luas daerah yang dibatasi oleh dua kurva F(x) dan G(x) dari x = a s.d x= b adalah :

Luas (L) = x

=a x=b

F

(

x

) −

G

(

x

)

dx

2. Untuk menghitung volume benda putar

a. Volume benda putar jika daerah yang dibatasi krva F(x), sumbu x dari x = a s.d x= b adalah :

Volume (V) =

π

x=a x=b

F

2

(

x

)

dx

b. Volume benda putar jika daerah yang dibatasi krva F(x), dan G(x) dari x = a s.d x= b adalah :

Volume (V) =

π

x=a x=b

F

2

(

x

)−

G

2

(

x

)

dx

c. Volume benda putar jika daerah yang dibatasi krva F(y), sumbu y dari y = a s.d y= b adalah :

Volume (V) =

π

y=a y=b

F

2

(

y

)

dx

d. Volume benda putar jika daerah yang dibatasi krva F(y), dan G(y dari y = a s.d y= b adalah :

Volume (V) =

π

x=a x=b

F

2

(

x

)−

G

2

(

x

)

dx

LATIHAN SOAL.

Selesaikan soal-soal berikut ini.

1.

0

π/2

cosxdx=. ..


(4)

2.

(

x

2

+

3

)

5

.2

xdx

=

...

. 3.

(

sin

x

+

cos

x

)

2

dx

=

...

.

4. Jika F’(x) = 8x-2, dan F(5) = 36, maka F(x) = ....

5. Hasil dari

3x cos 2x dx = ....

6. Hitung luas daerah yang dibatasi oleh kurva

y

=

x

2

x

3

dan sumbu x pada interval

1≤x≤4

7.Hitung volume benda putar apabila daerah yang dibatasi kurva

y

=

x

2

+

2

dan sumbu x pada interval 1≤x≤2 jika diputar 360 0 mengelilingi sumbu x.


(5)

3 B A 2

C 3 0

-5

BAB II

PROGRAM LINEAR

1. Pengertian Program Linear

Program Linear adalah suatu cara untuk penyelesaian masalah dengan menggunakan persamaan atau pertidaksamaan linear yang mempunyai banyak penyelesaian, dengan memperhatikan syarat-syarat agar diperoleh hasil yang maksimum/minimum (penyelesaian optimum).

Contoh :

Diketahui pertidaksamaan linear sebagai berikut :

x

+

y

3

2

x

5

y

≤−

10

x≥0

y

0

Tentukan : a. Grafik dari sistem pertidaksamaan tersebut. b. Nilai maksimumnya jika Z= 3x + 2y

a. Grafik dari pertidaksamaan linear berbentuk suatu daerah yaitu daerah yang diarsir.

b. Nilai maksimum dari pertidaksamaan linear dapat diperoleh dari mensubstitusi koordinat-koordinat titik A , B dan C ke persamaan : Z = 3x + 2y sebagai berikut


(6)

C(3,0) maka Z = 3(3) + 2(0) = 9

Untuk koordinat B(x,y) dapat dicari dengan mengeliminasi persamaan linear :

x + y = 3 | x5 | 5x + 5y = 15 2x – 5y = – 10 | x1 | 2x – 5y = – 10

+ 7x = 5 x =

5 7

x + y = 3 ⇒

5

7 + y = 3 y = 3 –

5 7 =

16

7 sehingga B( 5 7 , 16

7 )

Z = 3(

5

7 ) + 2( 16

7 ) = 15

7 + 32

7 = 47

7 = 6 6 7

Dari substitusi A, B , dan C tersebut disimpulkan bahwa nilai maksimumnya adalah 9 yang diperoleh untuk x = 3 dan y = 0 ( atau pada titik B)

2. Model Matematika

Model matematika adalah sistem persamaan atau pertidaksamaan yang mengungkapkan semua syarat yang harus dipenuhi oleh x dan y.

Model matematika ini merupakan cara sederhana untuk memandang suatu masalah dengan menggunakan persamaan atau pertidaksamaan matematika.

Contoh 1 :

Jika harga tiga buku dan lima pensil Rp. 30.000,00 sedangkan harga dua buku dan satu pensil Rp. 13.000,00. Buatlah model matematikanya.

Penyelesaian:

Misalkan satu buku = x Satu pensil = y

Maka model matematikanya 3x + 5y = 30.000 2x + y = 13.000


(7)

30

0 15 44

22

Seorang pedagang akan membuat 2 jenis roti dengan menggunakan bahan tepung 200 gram dan mentega 25 gram untuk jenis A. Sedangkan untuk jenis B digunakan bahan 100 gram tepung dan 50 gram mentega. Jika bahan yang tersedia 3 kg tepung dan 1,1 kg mentega, tentukan :

a. Model matematikanya b. Sketsa grafiknya

c. Fungsi tujuan untuk keuntungan maksimum jika roti A seharga Rp. 3.600,00 dan roti B Rp. 2.400,00.

Penyelesaian:

Misal roti A = x dan roti B = y

Jenis roti Tepung Mentega Harga

A B Persediaa

n

200 gr 100 gr 3 kg = 3000 gr

25 gr 50 gr 1,1 kg = 1100 gr

3600 2400

a. Model matematika:

Roti A ⇒

200

x

+

100

y

3000

2

x

+

y

30

Roti B ⇒

25

x

+

50

y

1100

x

+

2

y

44

Banyaknya roti A adalah x≥0

Banyaknya roti B adalah

y

0

b. Sketsa grafik

200

x

+

100

y

3000

2

x

+

y

30

25

x

+

50

y

1100

x

+

2

y

44

x0


(8)

1

2

2

y

x

12

2

x

y

B(4,4) A

C O

6

6 12

12

Daerah penyelesaiannya adalah daerah yang diarsir.

c. Fungsi tujuan Z yang berupa keuntungan maksimum berdasarkan banyaknya roti yang dibuat yaitu :

Z = 3600 x + 2400 y

3. Nilai Optimum

Nilai optimum diperoleh berdasarkan nilai fungsi tujuan yang dikehendaki, yaitu berupa nilai maksimum atau nilai minimum. Cara mencarinya bias dengan :

a. Mensubstitusi koordinat titik-titik sudut dalam daerah penyelesaian terhadap fungsi tujuan.

b. Menggunakan garis selidik. a.d:

a. Mensubstitusi koordinat titik-titik sudut dalam daerah penyelesaian terhadap fungsi tujuan.

Contoh :

Model matematikanya

2

x

+

y

12

x

+

2

y

12

x≥0

y

0

Fungsi tujuan yang maksimum/minimum , Z = 5 x + y

Periksa koordinat titik O, A, B dan C sebagai titik-titik sudut dalam daerah penyelesaian

(x,y) ⇒ Z = 5 x + y

O(0,0) ⇒ Z = 5(0) + 0 = 0 (minimum) A(0,6) ⇒ Z = 5(0) + 6 = 6

B(4,4) ⇒ Z = 5(4)+4 = 24


(9)

12

2

y

x

12

2

x

y

B(4,4) A

C O

6

6 12

12

k

y

x

5

Jadi nilai maksimum sebesar 30 dicapai pada x = 6 dan y = 0, sedangkan nilai minimum sebesar 0 dicapai pada x = 0 dan y = 0

b. Menggunakan garis selidik

Garis selidik adalah garis yang diperkirakan berpotongan dengan garis lain yang mendekati nilai optimum.

Bentuk umum garis selidik : ax + by = k ; k ¿ R

ax + by diperoleh dari bentuk fungsi tujuan garis selidik ini semakin jauh dari 0 harganya makin besar (maksimum).

Contoh :

Model matematikanya

2

x

+

y

12

x

+

2

y

12

x≥0 ,

y

0

Fungsi tujuan yang maksimum/minimum , Z = 5 x + y Maka garis selidik ;

k = 5 x + y , dengan k ¿ R

Tampak bahwa garis selidik terjauh dari titik O(0,0) adalah garis yang melalui titik C(6,0) yaitu Z = 5(6)+0=30.

LATIHAN SOAL.

Kerjakan soal-soal berikut:


(10)

2. Gambarlah daerah HP dari 3X + 2 Y < 12 5X + 6Y < 30 X > 0

Y > 0 3. Gambarlah grafik 2X + Y = 12

4X + 3Y = 12

4. Tentukan pertidaksamaan-pertidaksamaan dari gambar berikut

5. Tempat parkir seluas 360 m2 dapat menampung tidak lebih dari 30 kendaraan. Untuk parkir sebuah sedan diperlukan rata-rata 6 m2 dan sebuah bus 24 m2 . Jika banyak sedan dinyatakan dengan x dan banyak bus dinyatakan dengan y , maka tentukanlah model matematika dari persoalan tersebut.


(11)

BAB III

MATRIKS

A. PENGERTIAN MATRIKS

1. Pengertian

Matriks adalah susunan bilangan yang diatur dalam baris dan kolom berbentuk persegi panjang. Susunan itu diletakkan dalam suatu kurung biasa atau kurung siku.

Contoh : 1). x y

¿

righ

¿ ¿ ¿

(¿)¿ ¿

¿ 2). (4 – 2 5) 3).

6 8 10

3 4 5

¿

righ

¿ ¿ ¿ (¿)¿

¿ ¿

2. Notasi Matriks

Suatu matriks dilambangkan dengan huruf besar. Contoh :

1). A= x y

¿

righ

¿ ¿ ¿ (¿)¿ ¿

¿ 2). B = (4 – 2 5) 3).C =

6 8 10

3 4 5

¿

righ

¿ ¿ ¿ (¿)¿ ¿

¿

Setiap kolom dalam suatu susunan disebut elemen (unsur), yang ditunjukkan pertama menyebutkan nomor barisnya dan kemudian nomor kolomnya.


(12)

A =

(

3 4 5 2

1 2 3 0

1 3 4 6

)

– 1 adalah elemen baris kedua kolom pertama 6 adalah elemen baris ke tiga kolom ke empat.

3. Ordo Suatu Matriks

Ordo suatu matriks diberikan dengan menyertakan banyaknya baris kemudian kolom.

Contoh :

A =

(

1 0 4

3 2 5

)

Banyaknya baris matriks A adalah 2 Banyaknya kolom matriks A adalah 3. Ordo matriks A adalah 2 x 3 ditulis

A

2×3 Secara umum :

Jika banyaknya baris matriks A adalah m dan banyaknya kolom n maka ordo matriks A ialah m x n ditulis

A

m×n .

4. Macam – Macam Matriks a. Matriks Baris

Bila suatu matriks hanya mempunyai satu baris disebut matriks baris. Contoh : A = ( 2 4 – 7 )

b. Matriks Kolom

Bila suatu matriks hanya mempunyai satu kolom disebut matriks kolom.

Contoh : B =

5

−1 4 5

¿

righ

¿ ¿ ¿

(¿) (¿) (¿)¿ ¿

¿

c. Matriks Bujur Sangkar

Bila suatu matriks banyaknya baris dan banyaknya kolom sama, maka disebut matriks bujur sangkar.

Baris 1 Baris 2 Baris 3 Kolom 1

Kolom 3 Kolom 2


(13)

Contoh : A =

(

3 1

6 8

)

matriks bujursangkar berordo 2

B =

(

2 3

1

5 2 0

6 1 1

)

matriks bujursangkar berordo 3

d. Matriks Identitas (Matriks Satuan).

Bila suatu matriks bujur sangkar yang semua elemen pada diagonal utama adalah 1 dan elemen-elemen yang lain 0 , maka disebut matriks identitas.

Contoh : I =

(

1 0

0 1

)

5. Kesamaan Matriks

Dua matriks A dan B disebut sama jika :

a. Kedua matriks mempunyai ordo yang sama b. Unsur (elemen) yang bersesuaian sama. Contoh :

A =

(

3 1

6 8

)

B =

(

6

2 1

5+1 162

)

Matriks A = B, sebab ordonya sama dan

3 = 62 1 = 1

6 = 5 + 1 8 = 162

6. Transpose Matriks dan Notasinya

Dari matriks A yang diketahui dibentuk matriks baru dengan ketentuan : a. Baris pertama matriks A menjadi kolom pertama matriks baru.

b. Baris kedua matriks A menjadi kolom ke dua matriks baru dan seterusnya. Matriks baru yang terbentuk itu disebut transpose matriks A dan ditulis A’ atau

AT (dibaca tranpos A ).

Contoh :

A =

(

2 7 1

4 9 0

)

A

T

=

(

7 9

2 4

1 0

)

LATIHANSOAL.


(14)

a.

A

=

(

1 3

5 7

0 9

)

c. P =

x y z ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿

b.

B

=

(

1 2

3

4

5

0

1

9

)

d. R = ( 3 5 1 6)

2. Tentukan ordo dari matriks-matriks berikut.

a. A = ( 8 2 0 3 5) c. M =

−1 0 −3 5 ¿ righ ¿ ¿ ¿ (¿) (¿) (¿)¿ ¿ ¿

b.

B

=

(

4 1 0 5

0

2 7 8

)

d. N =

(

0 5 4

2 0 1

6 0 5

)

3. Tentukan x dan y dari

a. ( 5x – 2y) = ( 10 4 )

b.

2x+ y

x+2 y

¿ ri gh ¿ ¿ ¿ 8 −1 ¿ ri gh ¿ ¿ ¿ (¿) ¿ ¿ ¿ c.

4 xy

−3x+2 y

¿ righ ¿ ¿ ¿ −1

4 12 ¿ righ ¿ ¿ ¿ (¿)¿ ¿ ¿

4. Tentukan transpose dari masing-masing matriks di bawah ini.

a. A =

(

2 4

1

1 2 0

)

c. C =

(

5

3

4

6

0

1

2 8

)

b. B =

1 2 −1 0 ¿ righ ¿ ¿ ¿ (¿) (¿) (¿)¿ ¿

¿ d. D = ( 4 2 5 9 0)

5. Diketahui P =

(

x

9

3

y

)

dan Q =

(

5

3

9

4

)

Jika PT = Q,tentukan nilai x dan y.

B. PENJUMLAHAN MATRIKS

1. Penjumlahan Matriks

Dua matriks A dan B dapat dijumlahkan,jika ordo matriks A sama dengan ordo matriks B. Menjumlahkan matriks A dengan matriks B dilakukan dengan cara


(15)

menjumlahkan elemen matriks A dengan elemen matriks B yang bersesuaian letaknya(seletak).

Misal :

A =

(

a b

c d

)

dan B =

(

e f

g h

)

Maka A + B =

(

a b

c d

)

+

(

e f

g h

)

=

(

a

+

e b

+

f

c

+

g d

+

h

)

Contoh :

1. Jika P =

3 2 3 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿

¿ dan Q =

0 −2 4 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿

¿ maka P + Q =

3 2 3 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿ + 0 −2 4 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿ = 3 0 7 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿

Q + P =

0 −2 4 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿ + 3 2 3 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿ = 3 0 7 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿

¿ karena P + Q = Q + P, maka penjumlahan matriks bersifat komutatif.

2. Jika A =

(

2 1

4 2

)

B =

(

0 1

2 3

)

dan C =

(

3 7

8 9

)

maka a). ( A + B ) + C =

2 1

4 2

¿

ri g¿h

¿ ¿

0 1

2 ¿3

ri gh

3 7

8 ¿ 9

ri g¿¿¿h

(¿ ) ¿ ¿ (¿ ) ¿ ¿ ¿¿ =

(

2 2

6 5

)

+

(

3 7

8 9

)

=

(

5

9

14 14

)

b). A + (B + C) =

(

2 1

4 2

)

+

0 1

2 3

¿

r ig h

¿ ¿ ¿ 3 7 8 9 ¿ ¿ (¿ ) ¿ ¿ ¿ ¿ =

(

2 1

4 2

)

+

(

3

8

10 12

)

=

(

5

9

14 14

)

Dari contoh 2 a) dan 2b) , maka berlaku hukum asosiatif penjumlahan matriks.

2. Pengurangan Matriks

Jika A dan B dua matriks yang ordonya sama maka matriks hasil pengurangan A dan B sama artinya dengan menjumlahkan matriks A dengan matriks lawan B. Jadi A – B = A + (– B).

Contoh :

Jika P =

(

4 7

3 2

)

dan Q =

(

2

1

3

2

)

maka

a). P – Q =

(

4 7

3 2

)

(

2

1


(16)

=

(

4 7

3 2

)

+

(

2

1

3 2

)

=

(

2 6

0 4

)

b).Q – P =

(

2

1

3

2

)

(

4 7

3 2

)

=

(

2

1

3

2

)

+

(

4

7

3

2

)

=

(

2

6

0

4

)

Karena P – Q tidak sama dengan Q – P, maka pada pengurangan matriks tidak berlaku hukum komutatif.

LATIHAN SOAL :

Sederhanakan :

1.

(

6

7

4

2

4 2

3

6

)

+

(

7

6 6

6

5 3 4

8

)

2. 2 x 4 y ¿ r igh ¿ ¿ ¿

−6 x

3 y ¿ r igh ¿ ¿ ¿ (¿) ¿ ¿ ¿

3. Manakah matriks-matriks berikut yang dapat dijumlahkan.

a. 3 2 ¿ ri gh ¿ ¿ ¿ 4 0 ¿ ri gh ¿ ¿ ¿ (¿) ¿ ¿

¿ e.

(

2

a

3

b

3

c

4

d

)

+

(

4

a

6

b

7

c

3

d

)

b. 3 4 2 ¿ righ ¿ ¿ ¿ (¿) (¿)¿

(4 2 3

4 −2 −4)+¿ ¿

¿ f. ( 4 7 ) + ( 3 0)

c. (3) +

4 0 ¿ righ ¿ ¿ ¿ (¿)¿ ¿

¿ g. ( 7 ) + ( 0 )

d. ( 4 6 ) +

6 3 ¿ righ ¿ ¿ ¿ (¿)¿ ¿

¿ h. ( 4 - 2 3 ) +

1 4 7 ¿ righ ¿ ¿ ¿ (¿) (¿)¿ ¿ ¿

4. Jika M =

(

6

3 0

2 4 3

)

dan N =

(

1

0 2

3 6 4

)

. Carilah M + N dan N +

M.

Hukum apakah dalam penjumlahan matriks yang dapat dilihat dari hasil tersebut ?

5. Selesaikan masing-masing persamaan di bawah ini, jika X matriks 2 x 2

a.

(

4

2

3

6

)

+

X

=

(

2

3


(17)

b.

X

(

3

2

5 3

)

=

(

2

1

7

3

)

c.

(

15

6

12 10

)

X

=

(

12

16

10 12

)

C. PERKALIAN MATRIKS

1. Perkalian Skalar .

Perkalian skalar ialah perkalian suatu matriks dengan bilangan (skalar). Hasil kali matriks A dengan bilangan p ditulis p.A, ialah matriks yang ordonya sama dengan matriks A, dan elemen-elemennya didapat dari perkalian setiap unsur A dengan p.

Misal : A =

(

a b

c d

)

maka p.A = p.

(

a b

c d

)

=

(

pa pb

pc pd

)

Contoh : Jika

A

=

(

4

2

3

1

5

2

)

maka

4 .

A

=

4 .

(

4

2

3

1

5

2

)

=

(

16

8

12

4

20

8

)

2. Perkalian Matriks Dengan Matriks

Dua matriks dapat dikalikan, apabila banyaknya kolom matriks pertama sama dengan banyaknya baris matriks ke dua .

x y ¿ righ ¿ ¿ ¿ ( ) = ¿

ax+by c x+dy e x+fy

¿

righ

¿ ¿

(¿) ¿

(a b

c d

e f ) ⋅¿ ¿

¿

Contoh 1 :

Jika

P

=

(

2 1 0

3 4 2

)

dan

Q

=

(

5 1

6 2

7 3

)

Maka

P

×

Q

=

(

2 1 0

3 4 2

)

¿

(

5 1

6 2

7 3

)

=

(

2.5

+

1.6

+

0.7 2.1

+

1.2

+

0.3

3 .5

+

4.6

+

2.7 3. 1

+

4 .2

+

2.3

)

=

(

10

+

6

+

0

2

+

2

+

0

15

+

24

+

14 3

+

8

+

6

)

=

(

16 4

53 17

)


(18)

Matriks Identitas (Matriks Satuan.)

Sifat-sifatnya menyerupai sifat-sifat satuan dalam sistem bilangan real. Jika A adalah matriks bujur sangkar, maka I . A = A . I = A

Misal : A =

(

3 5

2 4

)

, I =

(

1 0

0 1

)

maka

I . A =

(

1 0

0 1

) (

3 5

2 4

)

=

(

3

+

0 5

+

0

0

+

2 0

+

4

)

=

(

3 5

2 4

)

A . I =

(

3 5

2 4

) (

1 0

0 1

)

=

(

3

+

0 0

+

5

2

+

0 0

+

4

)

=

(

3 5

2 4

)

Ternyata I . A = A . I = A Pemangkatan Matriks Bujur Sangkar

Pemangkatan matriks bujur sangkar adalah perkalian antara matriks itu sendiri. Contoh :

Jika

A

=

(

2 4

3

5

)

maka tentukan A2

Jawab :

A2 =

(

2 4

3

5

)

(

2 4

3

5

)

=

(

4

+

12

8

+

20

6

+

15 12

+

25

)

=

(

16 12

9

37

)

Sifat-sifat perkalian matriks

Jika antara matriks-matriks A , B dan C dapat saling dikalikan.

1. (A.B).C = A. (B.C) Asosiatif

2. I . A = A . I = A I matriks identitas

3. A . A −1 = A −1 .A = I A −1 matriks kebalikan. 4. A . (B + C) = A.B + A. C Distributif

5. p . (A.B) = (p.A).B = A.(p.B) p (skalar)

LATIHAN SOAL.

1. Diketahui p = 3 , A =

(

2 1

3 4

)

, B =

(

7 4

5 6

)

Tentukan : a. p. (A.B) b. (p.A).B


(19)

c. (p.B).A

2. Jika A =

3 4 ¿ righ ¿ ¿ ¿ (¿)¿ ¿

¿ , B = (3 1 3) , C =

(

4 7 3

0 1 2

5 4 1

)

Tentukan : A . (B.C) dan (A.B).C

3. Jika A =

(

7 6

8 9

)

, I =

(

1 0

0 1

)

Tentukan A.I dan I . A

4. Jika A =

(

3 2

4 3

)

; A −1

=

(

3

2

4

3

)

. Tentukan A . A

−1

dan A −1 . A

5. Jika A =

(

1 2 3

2 5 6

)

, B =

(

1 3

7 8

6 4

)

, C =

(

7 4

3 2

1 0

)

Tentukan: a. B+C b. (B+A).A c. C . A d. B.A + C.A

D. INVERS MATRIKS

Pengertian Invers matriks / Kebalikan Matriks

Jika A dan B adalah matriks bujur sangkar yang ordonya sama sehingga A.B = B.A = I , maka B adalah invers A dan A adalah invers B.

Dalam hal ini akan dibahas untuk matriks berordo 2 x 2 Contoh :

Jika A =

(

5

2

3

1

)

dan B =

(

1 2

3 5

)

, tunjukkanlah matriks A dan B

adalah saling invers. Jawab :

A . B =

(

5

2

3

1

)

.

(

1 2

3 5

)

=

(

5

+

6 10

10

3

+

3

6

5

)

=

(

1 0

0 1

)

B . A =

(

1 2

3 5

)

.

(

5

2

3

1

)

=

(

5

+

6

2

2

15

+

15 6

5

)

=

(

1 0

0 1

)

Karena A.B = B.A = I, maka A adalah invers B dan sebaliknya. Rumus Umum :

Jika A =

(

a b


(20)

A

−1

=

a

.

d

1

bc

(

d

c

a

b

)

, dengan adbc≠0

adbc dinamakan determinan matriks A dan ditulis

det A =

|

a b

c d

|=

ad

bc

atau biasa ditulis D=adbc

Jika D=adbc=0 , matriks A tersebut tidak mempunyai invers, dalam hal ini matriks A disebut matriks singular.

Contoh :

Diketahui matriks A =

(

2 1

4 3

)

tentukan determinan dan inversnya.

Jawab :

D=adbc=(2)(3)−(4)(1)=6−4=2

A

−1

=

a

.

d

1

bc

(

d

b

c

a

)

=

1 2

(

3 −1

−4 2

)

=

(

3

2 −

1 2

−2 1

)

Pemakaian matriks untuk menyelesaikan sistem persamaan linear. Contoh :

Tentukan harga X dan Y dari sistem persamaan dengan matriks.

2x+y=5

4x−5y=3

¿ {¿ ¿ ¿

¿

Jawab :

(2 1

4 −5)

x y ¿ ri gh ¿ ¿ ¿ 5 3 ¿ ri gh ¿ ¿ ¿ (¿¿ ¿)¿

Misal : A =

(

2

1

4

5

)

A−1= 1

−10−4

(

− 5 −1

−4 2

)

=

(

5 14 1 14 4 14 − 2 14

)

A−1. A .

x y ¿ r igh ¿ ¿ ¿

( )=A−1.

¿ 5 3 ¿ r igh ¿ ¿ (¿¿)¿¿ ( 5

1 4 1

14 4

1 4 − 2

1 4 )(

2 1

4 −5)

x y ¿ r i¿¿¿gh

( )=( 5

1 4 1

1 4 4

1 4 − 2

1 4 )

¿ 5 3 ¿

r igh

¿ ¿ (¿)¿

¿¿

(1 0

0 1)

x y ¿ r igh ¿ ¿ ¿ 2 1 ¿ r igh ¿ ¿ ¿ (¿¿)¿¿

Jadi x = 2 dan y = 1


(21)

a.

A

=

(

3

5

2 1

)

b.

B

=

(

3

2

1

0

)

c.

P

=

(

2 1

4 2

)

2. Jika

A

=

(

2 3

0 1

)

dan

B

=

(

2 4

1 3

)

Tentukan : a. A . B b. (A.B) −1 c. A−1 d. B−1

e. A−1 . B−1 f. B−1 . A−1

3. Tentukan himpunan penyelesaian sistem persamaan berikut dengan metode matriks.

a.

2x+y=5

2x+3y=−1

¿ {¿ ¿ ¿

¿ b.

10x+5y+3=0

5x+10y+9=0

¿ {¿ ¿ ¿


(22)

a

A

AB

B

z t

i x

j y

b

b

a

b

BAB IV

VEKTOR

1. Vektor adalah ruas garis yang mempunyai besar (panjang) dan arah tertentu.

2. Vektor posisi adalah vektor yang titik pangkalnya pada titik pusat koordinat.

3. Vektor satuan adalah vektor yang panjangnya satu satuan.

4. Dua buah vektor adalah sama, jika dan hanya jika arah dan panjangnya sama.

5. Vektor satuan pada sumbu x disebut i. Vektor satuan pada sumbu y disebut j. Vektor satuan pada sumbu z disebut k.

6. Jika titik A mempunyai koordinat A (a1, a2, a3), maka vektor posisi titik A adalah

a

= a1i + a2j + a3k atau

a

= (a1, a2, a3).

7. Jika A (a1, a2, a3) dan B (b1, b2, b3 ), maka vektor

AB

=

b

-

a

=

(

b1−a1

)

i+

(

b2−a2

)

j+

(

b3−a3

)

k

BA

=

a

-

b

=

(

a1−b1

)

i+

(

a2−b2

)

j+

(

a3−b3

)

k

8. Panjang/besar vektor

a

= a1i + a2j + a3k adalah

|

a

|=

a

12

+

a

22

+

a

32 .

9. Jika

a

+

b

=

c

, maka

|

c

|

2

=|

b

|

2

+|

a

|

2

+

2

|

a

|

.

|

b

|

cos

α

Jika

a

-

b

=

c

, maka

|

c

|

2

=|

b

|

2

+|

a

|

2

2

|

a

|

.

|

b

|

cos

α


(23)

10. Perkalian vektor.

a. Perkalian vektor dengan bilangan/konstanta

Jika

a

= a1i + a2j + a3k, maka

a

= a1i + a2j + a3k.

b. Perkalian skalar antara dua vektor → hasilnya skalar/bilangan.

Jika

a

= a1i + a2j + a3k dan

b

= b1i + b2j + b3k , maka

a

.

b

=

|

a

|

.

|

b

|

cos α = a1 b1 + a2 b2 + a3 b3. c. Perkalian antara dua vektor → hasilnya berupa vektor.

Jika

a

x

b

=

c

, maka

|

c

|

=

|

a

|

x

|

b

|

sin α . Jika

a

= a1i + a2j + a3k, dan

b

= b1i + b2j + b3k , maka

c

=

a

x

b

=

(

a2b3a3b2

)

i

(

a1b3a3b1

)

j+

(

a1b2a2b3

)

k .

11. Sudut antara dua vektor.

Jika

a

= a1i + a2j + a3k

b

= b1i + b2j + b3k, maka

a

.

b

=

|

a

|

.

|

b

|

cos α , sehingga

Cos α =

a

.

b

|

a

|

.

|

b

|

=

a

1

b

1

+

a

2

b

2

+

a

3

b

3

|

a

|

.

|

b

|

.

12. Proyeksi vektor dan vektor proyeksi.

Catatan : Proyeksi vektor → panjang proyeksinya.

Vektor proyeksi → vektornya.

Jika vektor

a

diproyeksikan ke vektor

b

, menjadi vektor

c

, maka proyeksi vektornya yaitu panjang

c

adalah :

|

c

|

=

a

|

b

.

b

|

a

b

θ

a

b

θ


(24)

Sedangkan vektor proyeksinya, yaitu

c

adalah

c

=

a

.

b

|

b

|

2

b

13. Perbandingan vektor

Jika A (a1, a2,a3) dan B (b1, b2,b3), sedangkan P (p1, p2,p3) terletak pada AB, sehingga

AP : PB = m : n, maka :

P1 =

na1+mb1 m+n

P2 =

na2+mb2 m+n

P3 =

na3+mb3 m+n

Contoh Soal:

1. Panjang vektor

a

=

8

i

+

9

j

+

12

k

adalah

|

a

|=

8

2

+

9

2

+

12

2

=

64

+

81

+

144

=

289

=

17

2. Jika

a

=

3

i

2

j

+

4

k

dan

b

=

5

i

+

6

j

7

k

, maka

a

x

b

= ((-2).(-7) – 4.6)i – (3.(-7) – 4.5)j + (3.6-(-2).(-7))k = (14-24)i – (-21-20)j + (18-14)k

= -10i + 41j +4k.

3. Besar sudut antara vektor

a

=

2

i

+

j

+

3

k

dan

b

=

3

i

2

j

+

k

adalah .... Jawab:

|

a

|=

4

+

1

+

9

=

14

|b|=

9

+

4

+

1

=

14

cos

θ

=

a

.

b

|

a

|

.

|

b

|

=

2.3

+

1.

(−

2

)+

3.1

14 .

14

=

6

2

+

3

14

=

1

2

θ=

60

0

LATIHAN SOAL.

Selesaikan soal-soal berikut ini dengan tepat.

1. Jika besar sudut antara vektor

p

dan vektor

q

adalah 600, panjang

p

dan

q

masing-masing 10 dan 6, maka panjang vektor (

p

-

q

) adalah .... A (a1, a2, a3)

B (b1, b2, b3 ),

P m


(25)

2. Diketahui titik P (-3, -1, -5 ), Q (-1, 2, 0 ), dan R (1, 2, -2). Jika

PQ

=

a

dan

QR

+⃗

PR

=

b

, maka

a

.

b

= ....

3. Diketahui titik-titik P ( 2, -3, 0 ), Q ( 3, -1, 2 ), dan R ( 4, -2, -1 ). Panjang proyeksi vektor

PQ

pada vektor

PR

adalah ....

4. Vektor yang merupakan proyeksi vektor ( 3, 1, -1 ) pada vektor ( 2, 5, 1 ) adalah .... 5. Diketahui vektor

OA

= ( 1, 2 ) dan vektor

OB

= ( 2, 1 ). Jika titik P terletak pada


(26)

TRANSFORMASI

Transformasi adalah suatu perpindaban/perubaban.

1. TRANSLASI (Pergeseran sejajar)

Matriks Perubahan Perubahan

a 

 b  (x,y)  (x+a, y+b) F(x,y) = 0  (x-a, y-b) = 0 Ket :

x' = x + a  x = x' - a y' = y + b  y = y' -b

Sifat:

o Dua buah translasi berturut-turut  a diteruskan dengan  b 

dapat digantikan dengan c translasi tunggal a + c   d   b + d 

o Pada suatu translasi setiap bangunnya tidak berubah.

2. REFLEKSI (Pencerminan terhadap garis) Pencerminan

terhadap Matriks Perubahan Titik Perubahan fungsi

sumbu-x 0 -1 1 -0  (x,y) (x,-y) F(x,y) = 0 = 0 F(x,-y)

sumbu -y  -1 0 

-0 1  (x,y) (-x,y)

F(x,y) = 0F(-x,y) = 0

garis y = x 01 

 1 0  (x,y)  (y,x)

F(x,y) = 0  F(y,x) = 0

garis y = -x -0 -1

1 -0  (x,y) (-y,-x)

F(x,y) = 0  F(-y,-x)= 0

Ket. : Ciri khas suatu matriks Refleksi adalah determinannya = -1 SIFAT-SIFAT

o Dua refleksi berturut-turut terhadap sebuah garis merupakan suatu

identitas, artinya yang direfleksikan tidak berpindah.

o Pengerjaan dua refleksi terhadapdua sumbu yang sejajar, menghasilkan

translasi (pergeseran) dengan sifat:

 Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak


(27)

 Arah translasi tegak lurus pada kedua sumbu sejajar, dari sumbu

pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar bersifat tidak komutatif.

o Pengerjaaan dua refleksi terhadap dua sumbu yang saling tegak lurus,

menghasilkaan rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua sumbu pencerminan. Refleksi terhadap dua sumbu yang saling tegak lurus bersifat komutatif.

o Pengerjaan dua refleksi berurutan terhadap dua sumbu yang berpotongan

akan menghasilkan rotasi (perputaran) yang bersifat:

 Titik potong kedua sumbu pencerminan merupakan pusat

perputaran.

 Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu pencerminan.

 Arah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua.

b. ROTASI (Perputaran dengan pusat 0)

Rotasi Matriks Perubahan Titik Perubahan Fungsi

½  0 -1

1 -0  (x,y)(-y,x) F(x,y) = 0F(y,-x) = 0  -1 0

1 -1  (x,y) (-x,-y) F(x,y) = 0F(-x,-y) = 0

3/2  0 -1

-1 0  (x,y) (y,-x) F(x,y) = 0 F(-y,x) = 0 

cos -sin sin cos

(x,y)  (x cos - y sin , x sin  + y cos ) F(x,y) = 0 F(x cos  + y sin , -x sin  + y cos

) = 0

Ket.: Ciri khas suatu matriks Rotasi adalah determinannya = 1

SIFAT-SIFAT

a. Dua rotasi berturut-turut merupakan rotasi lagi dengan sudut putar dsama dengan jumlah kedua sudut putar semula.

b. Pada suatu rotasi, setiap bangun tidak berubah bentuknya.

Catatan:


(28)

(rotasi), tampak bahwa bentuk bayangan sama dan sebangun (kongruen) dengan bentuk aslinya. Transformasi jenis ini disebut transformasi isometri.

c. DILATASI (Perbesaran terhadap pusat 0)

Dilatasi Matriks Perubahan titik Perubahan fungsi

(0,k) k 0

0 k (x,y)(kx,ky) F(x,y)=0F(x/k,y/k)

Ket:

(0, k) merupakan perbesaran atau pengecilan dengan tergantung dari nilai k. Jika A' adalah peta dari A, maka untuk:

a. k > 1 → A' terletak pada perpanjangan OA

b. 0 < k < 1 → A' terletak di antara O dan A


(29)

Semester 2

BAB I

BARISAN DAN DERET

A. BARISAN DAN DERET ARITMETIKA

1. Barisan Aritmetika (Barisan Hitung)

U1, U2, U3, ...Un-1, Un disebut barisan aritmetika, jika

U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta

Selisih ini disebut juga beda (b) = b =Un - Un-1

Suku ke-n barisan aritmetika a, a+b, a+2b, ... , a+(n-1)b U1, U2, U3 ..., Un

Rumus Suku ke-n :

Un = a + (n-1)b = bn + (a-b) Fungsi linier dalam n

2. Deret Aritmetika (Deret Hitung)

a + (a+b) + (a+2b) + . . . + (a + (n-1) b) disebut deret aritmetika. Dimana:

a = suku awal b = beda

n = banyak suku

Un = a + (n - 1) b adalah suku ke-n

Jumlah n suku

Sn = 1/2 n(a+Un)

= 1/2 n[2a+(n-1)b]

= 1/2bn² + (a - 1/2b)n Fungsi kuadrat (dalam n)

Keterangan:

a. Beda antara dua suku yang berurutan adalah tetap (b = Sn")

b. Barisan aritmetika akan naik jika b > 0

Barisan aritmetika akan turun jika b < 0

c. Berlaku hubungan Un = Sn - Sn-1 atau Un = Sn' - 1/2 Sn"

d. Jika banyaknya suku ganjil, maka suku tengah

Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1) dst.

e. Sn = 1/2 n(a+ Un) = nUt → Ut = Sn / n

f. Jika tiga bilangan membentuk suatu barisan aritmetika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b


(30)

B. BARISAN DAN DERET GEOMETRI 1. Barisan Geometri (Barisan Ukur)

U1, U2, U3, ..., Un-1, Un disebut barisan geometri, jika

U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

Konstanta ini disebut pembanding / rasio (r)

Rasio r = Un / Un-1

Suku ke-n barisan geometri a, ar, ar² , ...arn-1

U1, U2, U3,...,Un

Suku ke n Un = arn-1fungsi eksponen (dalam n)

2. Deret Geometri (Deret Ukur)

a + ar² + ... + arn-1 disebut deret geometri

a = suku awal r = rasio

n = banyak suku

Jumlah n suku

Sn = a(rn-1)/r-1 , jika r>1

= a(1-rn)/1-r , jika r<1 Fungsi eksponen (dalam n)

Keterangan:

a. Rasio antara dua suku yang berurutan adalah tetap

b. Barisan geometri akan naik, jika untuk setiap n berlaku

Un > Un-1

c. Barisan geometri akan turun, jika untuk setiap n berlaku

Un < Un-1

Bergantian naik turun, jika r < 0

d. Berlaku hubungan Un = Sn - Sn-1

e. Jika banyaknya suku ganjil, maka suku tengah

U

t

=

U

1

xU

n

=

U

2

xU

n1 , dst

f. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah

a/r, a, ar.


(31)

Deret Geometri tak berhingga adalah penjumlahan dari

U1 + U2 + U3 + ...

n=1

Un = a + ar + ar² + ...

dimana ndan -1 < r < 1 sehingga rn 0

Dengan menggunakan rumus jumlah deret geometri didapat :

Jumlah tak berhingga S∞ = a/(1-r)

Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk

-1 < r < 1

Catatan:

a + ar + ar2 + ar3 + ar4 + ...

Jumlah suku-suku pada kedudukan ganjil

a+ar2 +ar4+ ... S

ganjil = a / (1-r²)

Jumlah suku-suku pada kedudukan genap

a + ar3 + ar5 + ... S

genap = ar / 1 -r²

Didapat hubungan : Sgenap / Sganjil = r

LATIHAN SOAL

Selesaikan soal-soal berikut ini.

1. Diketahui suatu deret 1 , 3 , 5 , 7 , …………

Jumlah n suku yang pertama adalah 225, maka suku ke-n adalah ….

2. Jumlah n suku pertama suatu deret aritmetika adalah Sn = n2 + 4n. Persamaan kuadrat

yang akar-akarnya suku ke-5 dan beda deret tersebut adalah ....

3. Jika tn adalah suku ke-n dari suatu deret geometri, dan p>3, maka tp-3 . t3p+5 sama

dengan ....

4. Jumlah deret tak hingga

sinx+sinx.cos2x+sinx. cos4x+.. . , untuk x=

π

6 adalah ....

5. Jumlah deret tak hingga


(32)

BAB II

EKSPONEN DAN LOGARITMA

A. EKSPONEN

Eksponen artinya perpangkatan, meliputi : - pangkat pecahan

- pangkat nol - pangkat negatif

a. Rumus-Rumus Eksponen

1. an = a.a.a.a ... (sebanyak n

faktor)

2. am . an = am+n

3. am : an = am-n

4. (am)n = am.n

5. a-n =

1

an

6. a0 = 1 , a ¿ 0

7. am/n = n

a

m

b. Persamaan Eksponen

Adalah persamaan yang didalamnya terdapat pangkat yang berbentuk fungsi dalam x (x sebagai peubah).

[Ket. : Usahakan setiap bilangan pokok ditulis sebagai bilangan berpangkat dengan bilangan dasar 2, 3, 5, 7, dst].

BENTUK-BENTUK

1). af(x) = ag(x) f(x) = g(x)

Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan.

contoh :

2 SUKU 1 SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI

1.

8

2x−3 82x-3) = (32x+1)1/4


(33)

2(6x-9)/2 = 2(5x-5)/4

(6x-9)/2 = (5x-5)/4 24x-36 = 10x+10 14x = 46

x = 46/14 = 23/7 2. 3x²-3x+2 + 3x²-3x = 10

3².3x²-3x+3x²-3x = 10

9. 3x²-3x + 3x²-3x = 10

10. 3x²-3x = 10

3x² - 3x = 30

x² - 3x = 0 x(x-3) = 0 x1 = 0 ; x2 = 3

3 SUKU GUNAKAN PEMISALAN

1. 22x + 2 - 2 x+2 + 1 = 0

22.22x - 22.2x + 1 = 0

Misalkan : 2x = p

22x = (2x)² = p²

4p² -4p + 1 = 0 (2p-1)² = 0 2p - 1 = 0 p =1/2 2x = 2-1

x = -1 2. 3x + 33-x - 28 = 10

3x + 33/3x - 28 = 10

misal : 3x = p

p + 27/p - 28 = 0 p² - 28p + 27 = 0 (p-1)(p-27) = 0 p1 = 1 → 3x = 30

x1 = 0 p2 = 27 → 3x = 33

x2 = 3

2). af(x) = bf(x) f(x) = 0

Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.


(34)

3x²-x-2 = 7x²-x-2

x² - x -2 = 0 (x-2)(x+1) = 0 x1 = 2 ; x2 = -1

3). af(x) = bf(x) f(x) log a = g(x) log b

Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.

Contoh:

4x-1 = 3x+1

(x-1)log4 = (x+1)log3

xlog4 - log4 = x log 3 + log 3 x log 4 - x log 3 = log 3 + log 4 x (log4 - log3) = log 12 x log 4/3 = log 12 x log 4/3 = log 12

x = log 12/ log 4/3 = 4/3 log 12

4). f(x) g(x) = f(x) h(x)

Bilangan pokok (dalam fungsi) sama, pangkat berbeda. Tinjau beberapa kemungkinan.

1. Pangkat sama g(x) = h(x)

2. Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1

3. Bilangan pokok f(x) = -1

Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilai

pangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.

ket :

g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1 g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1

4. Bilangan pokok f(x) = 0

Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.

ket : g(x) dan h(x) positif 0g(x) = 0h(x) = 0

Contoh:

(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3

1. Pangkat sama


(35)

2. Bilangan pokok = 1

x² + 5x + 5 = 1

x² + 5x + 4 = 0 → (x-1)(x-4) = 0 x2 = 1 ; x3 = 4

3. Bilangan pokok = -1

x² - 5x + 5 = -1

x² - 5x + 6 = 0 → (x-2)(x-3) = 0 x = 1 ; x = 4

g(2) = 4 ; h(2) = 7 ; x=2 tak memenuhi karena (-1)4 ¿ (-1)7

g(3) = 7 ; h(3) = 9 ; x4 = 3 memenuhi karena (-1)7 = (-1)9 = -1

4. Bilangan pokok = 0

x² - 5x + 5 = 0 → x5,6 = (5 ±

5

)/2

kedua-duanya memenuhi syarat, karena :

g(2 1/2 ± 1/2

5

) > 0 , h(2 1/2 ± 1/2

5

) > 0 Harga x yang memenuhi persamaan diatas adalah : HP : { x | x = 5,1,4,3,2 1/2 ± 1/2

5

}

c. Pertidaksamaan Eksponen

Bilangan Pokok a > 0 ¿ 1

Tanda Pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya

a > 1 0 < a < 1

af(x) > ag(x) f(x) > g(x)

af(x) < ag(x) f(x) < g(x)

(tanda tetap)

af(x) > ag(x) f(x) < g(x)

af(x) < ag(x) f(x) > g(x)

(tanda berubah)

Catatan: Untuk memudahkan mengingat, bilangan pokok 0 < a < 1 diubah saja menjadi a = 1.

Misal : 1/8 = (1/2)3 = 2-3

Contoh:

1. (1/2)2x-5 < (1/4)(1/2x+1)

(1/2)2x-5 < (1/2)2(1/2x+1)

Tanda berubah (0 < a < 1)

2x - 5 > x +2 x > 7

2. 32x - 4.3x+1 + 27 > 0

(3x)² - 4.31.3x + 27 > 0

misal : 3x = p

p² -12p + 27 > 0 (p - 9)(p - 3) > 0


(36)

p < 3 atau p > 9 3x < 3 atau 3x > 3²

x < 1 atau x > 2

B. LOGARITMA

Definisi : a

log

b

=

n

, artinya an = b

Syarat :

a

>

o

a

1

b

>

0

a. Rumus-Rumus Logaritma

1.

a

alogb

=

b

2. log

(

a

.

b

)=

log

a

+

log

b

3 .log

(

a

b

)=

log

a

log

b

4 .log

a

n

=

n

. log

a

5 .

a

log

b

=

mm

log

b

log

a

6 .

a

log

b

.

b

log

c

.

c

log

d

=

a

log

d

b. Persamaan Logaritma

Adalah persamaan yang didalamnya terdapat logaritma dimana numerus ataupun bilangan pokoknya berbentuk suatu fungsi dalam x.

Rumus-rumus:

alog f(x) = alog g(x) f(x) = g(x)

alog f(x) = b f(x) =ab

f(x)log a = b (f(x))b = a

Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi.

(Bilangan pokok > 0 dan bilangan pokok ¿ 1, dan numerus > 0 )

Contoh:

Tentukan nilai x yang memenuhi persamaan berikut ! 1. xlog 1/100 = -1/8

x-1/8 =10-2

(x -1/8) -8 =(10-2)-8 x= 10 16

2. xlog 81 -2 xlog 27 + xlog 9 +1/2 xlog 729 = 6 xlog 34 - 2 xlog33 + xlog3² + 1/2 xlog 36 = 6 4 xlog3- 6 xlog3 + 2 xlog3+ 3 xlog 3 = 6


(37)

3 xlog 3 = 6 xlog 3 = 2

x² = 3 x =

3

(x>0)

3. xlog (x+12) - 3 xlog4 + 1 = 0 xlog(x+12) - xlog 4³ = -1 xlog ((x+12)/4³) = -1 (x+12)/4³ = 1/x x² + 12x - 64 = 0 (x + 16)(x - 4) = 0 x = -16 (TM) ; x = 4

c. Pertidaksamaan Logaritma

Bilangan pokok a > 0 dan ¿ 1

Tanda pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya

a > 1 0 < a < 1

a log f(x) > b f(x) > ab a log f(x) < b f(x) < ab

(tanda tetap)

a log f(x) > b f(x) < ab a log f(x) < b f(x) > ab

(tanda berubah)

syarat f(x) > 0

Contoh:

Tentukan batas-batas nilai x yang memenuhi persamaan 1. ²log(x² - 2x) < 3

a = 2 (a>1) → Hilangkan log Tanda tetap

a. x² - 2x < 2³ x² - 2x -8 < 0 (x-4)(x+2) < 0 -2 < x < 4

b. syarat : x² - 2x > 0 x(x-2) > 0

x < 0 atau x > 2

HP : {x

|

- 2 < x < 0 atau 2 < x < 4} 2. 1/2log (x² - 3) < 0


(38)

a. (x² - 3) > (1/2)0

x² - 4 > 0

(x -2)(x + 2) < 0 x < -2 atau x > 2 b. syarat : x² - 3 > 0

(x -

3

)(x +

3

) > 0 x <

3

atau x >

3

HP : {x

|

x < - 2 atau x > 2}

LATIHAN SOAL

1. Jika 93x+2 =

1 812x−5

, maka x = ....

2. Jumlah akar-akar persamaan {2(4x)}-5.2x + 2 = 0 adalah ....

3. Jika 3log 2 = x, hitung 1/4log 27.

4. Himpunan penyelesaian persamaan 9 3

log

(

2

x

1

)

= 25 adalah .... 5. Nilai-nilai x yang memenuhi (2x)

1

+

2

log 2

x

> 64x3 adalah ....


(1)

2(6x-9)/2 = 2(5x-5)/4

(6x-9)/2 = (5x-5)/4 24x-36 = 10x+10 14x = 46

x = 46/14 = 23/7

2. 3x²-3x+2 + 3x²-3x = 10

3².3x²-3x+3x²-3x = 10

9. 3x²-3x + 3x²-3x = 10

10. 3x²-3x = 10

3x² - 3x = 30

x² - 3x = 0 x(x-3) = 0 x1 = 0 ; x2 = 3

3 SUKU GUNAKAN PEMISALAN

1. 22x + 2 - 2 x+2 + 1 = 0

22.22x - 22.2x + 1 = 0

Misalkan : 2x = p

22x = (2x)² = p²

4p² -4p + 1 = 0 (2p-1)² = 0 2p - 1 = 0 p =1/2 2x = 2-1

x = -1 2. 3x + 33-x - 28 = 10

3x + 33/3x - 28 = 10

misal : 3x = p

p + 27/p - 28 = 0 p² - 28p + 27 = 0 (p-1)(p-27) = 0 p1 = 1 → 3x = 30

x1 = 0 p2 = 27 → 3x = 33

x2 = 3

2). af(x) = bf(x) f(x) = 0

Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.


(2)

3x²-x-2 = 7x²-x-2

x² - x -2 = 0 (x-2)(x+1) = 0 x1 = 2 ; x2 = -1

3). af(x) = bf(x) f(x) log a = g(x) log b

Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.

Contoh:

4x-1 = 3x+1

(x-1)log4 = (x+1)log3

xlog4 - log4 = x log 3 + log 3 x log 4 - x log 3 = log 3 + log 4 x (log4 - log3) = log 12 x log 4/3 = log 12 x log 4/3 = log 12

x = log 12/ log 4/3 = 4/3 log 12

4). f(x) g(x) = f(x) h(x)

Bilangan pokok (dalam fungsi) sama, pangkat berbeda. Tinjau beberapa

kemungkinan.

1. Pangkat sama g(x) = h(x)

2. Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1

3. Bilangan pokok f(x) = -1

Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilai

pangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.

ket :

g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1

g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1

4. Bilangan pokok f(x) = 0

Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.

ket : g(x) dan h(x) positif 0g(x) = 0h(x) = 0

Contoh:

(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3

1. Pangkat sama


(3)

2. Bilangan pokok = 1 x² + 5x + 5 = 1

x² + 5x + 4 = 0 → (x-1)(x-4) = 0 x2 = 1 ; x3 = 4 3. Bilangan pokok = -1

x² - 5x + 5 = -1

x² - 5x + 6 = 0 → (x-2)(x-3) = 0 x = 1 ; x = 4 g(2) = 4 ; h(2) = 7 ; x=2 tak memenuhi karena (-1)4 ¿ (-1)7

g(3) = 7 ; h(3) = 9 ; x4 = 3 memenuhi karena (-1)7 = (-1)9 = -1 4. Bilangan pokok = 0

x² - 5x + 5 = 0 → x5,6 = (5 ±

5

)/2 kedua-duanya memenuhi syarat, karena :

g(2 1/2 ± 1/2

5

) > 0 , h(2 1/2 ± 1/2

5

) > 0 Harga x yang memenuhi persamaan diatas adalah : HP : { x | x = 5,1,4,3,2 1/2 ± 1/2

5

}

c. Pertidaksamaan Eksponen Bilangan Pokok a > 0 ¿ 1

Tanda Pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya

a > 1 0 < a < 1

af(x) > ag(x) f(x) > g(x)

af(x) < ag(x) f(x) < g(x) (tanda tetap)

af(x) > ag(x) f(x) < g(x)

af(x) < ag(x) f(x) > g(x)

(tanda berubah)

Catatan: Untuk memudahkan mengingat, bilangan pokok 0 < a < 1 diubah saja

menjadi a = 1. Misal : 1/8 = (1/2)3 = 2-3

Contoh:

1. (1/2)2x-5 < (1/4)(1/2x+1)

(1/2)2x-5 < (1/2)2(1/2x+1)

Tanda berubah (0 < a < 1)

2x - 5 > x +2 x > 7

2. 32x - 4.3x+1 + 27 > 0

(3x)² - 4.31.3x + 27 > 0

misal : 3x = p

p² -12p + 27 > 0 (p - 9)(p - 3) > 0


(4)

p < 3 atau p > 9 3x < 3 atau 3x > 3²

x < 1 atau x > 2

B. LOGARITMA

Definisi : a

log

b

=

n

, artinya an = b

Syarat :

a

>

o

a

1

b

>

0

a. Rumus-Rumus Logaritma

1.

a

alogb

=

b

2. log

(

a

.

b

)=

log

a

+

log

b

3 .log

(

a

b

)=

log

a

log

b

4 .log

a

n

=

n

. log

a

5 .

a

log

b

=

mm

log

b

log

a

6 .

a

log

b

.

b

log

c

.

c

log

d

=

a

log

d

b. Persamaan Logaritma

Adalah persamaan yang didalamnya terdapat logaritma dimana numerus ataupun bilangan

pokoknya berbentuk suatu fungsi dalam x.

Rumus-rumus:

alog f(x) = alog g(x) f(x) = g(x) alog f(x) = b f(x) =ab

f(x)log a = b (f(x))b = a

Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi. (Bilangan pokok > 0 dan bilangan pokok ¿ 1, dan numerus > 0 )

Contoh:

Tentukan nilai x yang memenuhi persamaan berikut ! 1. xlog 1/100 = -1/8

x-1/8 =10-2

(x -1/8) -8 =(10-2)-8 x= 10 16

2. xlog 81 -2 xlog 27 + xlog 9 +1/2 xlog 729 = 6 xlog 34 - 2 xlog33 + xlog3² + 1/2 xlog 36 = 6 4 xlog3- 6 xlog3 + 2 xlog3+ 3 xlog 3 = 6


(5)

3 xlog 3 = 6 xlog 3 = 2

x² = 3 x =

3

(x>0)

3. xlog (x+12) - 3 xlog4 + 1 = 0 xlog(x+12) - xlog 4³ = -1 xlog ((x+12)/4³) = -1 (x+12)/4³ = 1/x x² + 12x - 64 = 0 (x + 16)(x - 4) = 0 x = -16 (TM) ; x = 4

c. Pertidaksamaan Logaritma

Bilangan pokok a > 0 dan ¿ 1

Tanda pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya

a > 1 0 < a < 1

a log f(x) > b f(x) > ab a log f(x) < b f(x) < ab

(tanda tetap)

a log f(x) > b f(x) < ab a log f(x) < b f(x) > ab

(tanda berubah)

syarat f(x) > 0

Contoh:

Tentukan batas-batas nilai x yang memenuhi persamaan 1. ²log(x² - 2x) < 3

a = 2 (a>1) → Hilangkan log Tanda tetap a. x² - 2x < 2³

x² - 2x -8 < 0 (x-4)(x+2) < 0 -2 < x < 4

b. syarat : x² - 2x > 0 x(x-2) > 0

x < 0 atau x > 2

HP : {x

|

- 2 < x < 0 atau 2 < x < 4} 2. 1/2log (x² - 3) < 0


(6)

a. (x² - 3) > (1/2)0

x² - 4 > 0

(x -2)(x + 2) < 0 x < -2 atau x > 2 b. syarat : x² - 3 > 0

(x -

3

)(x +

3

) > 0 x <

3

atau x >

3

HP : {x

|

x < - 2 atau x > 2}

LATIHAN SOAL

1. Jika 93x+2 =

1 812x−5

, maka x = ....

2. Jumlah akar-akar persamaan {2(4x)}-5.2x + 2 = 0 adalah ....

3. Jika 3log 2 = x, hitung 1/4log 27.

4. Himpunan penyelesaian persamaan 9 3

log

(

2

x

1

)

= 25 adalah .... 5. Nilai-nilai x yang memenuhi (2x)

1

+

2

log 2

x

> 64x3 adalah ....