Hukum Kirchoff Uraian Materi .1 Arus Listrik

Gambar 4.3 Titik percabangan arus Dari gambar di atas arah arus I2 dan I3 berlawanan dengan arah arus I1, I4, dan I5. Jadi pada titik percabangan A berlaku : I1 + I4 + I5 – I2 – I3 = 0 atau I1 + I4 + I5 = I2 + I3 Sehingga persamaan untuk Hukum Kirchoff dapat ditulis dengan bentuk umum   I Contoh penerapan Hukum Kirchoff 1 adalah seperti rangkaian dibawah ini yang merupakan aplikasi sebagai pembagi arus. Gambar 4.4. Gambar Rangkaian Pembagi Arus Persamaan-persamaan yang didapatkan dari rangkaian di atas adalah sebagai berikut : Arus  i = i1 + i2 dan Tegangan  V = i1 . R1 = i2 . R2 Hukum Kirchoff II tentang tegangan Hukum Kirchoff II ini berhubungan dengan rangkaian listrik tertutup yang menyatakan : “Di dalam rangkaian tertutup, jumlah aljabar antara tegangan V dengan kerugian- kerugian tegangan selalu sama dengan nol” Hukum ini secara umum dapat ditulis dengan rumus : ΣV =Σ R x I Dalam gambar 4.5 dengan tidak memperhatikan kerugian tegangan di dalam baterai tahanan dalam baterai dianggap kecil maka : V – I.R = 0 atau E = I. R Ini sesuai dengan Hukum Ohm. 112 Gambar 4.5 Rangkaian listrik tertutup Dalam rangkain listrik arus searah untuk meperoleh suatu tegangan tertentu dapat menggunakan suatu kombinasi tahanan tertentu , rangkaian seperti ini disebut rangkaian pembagi tegangan. Rangkaian pembagi Tegangan yang sederhana dapat ditunjukkan oleh gambar 4.6 dibawah ini Gambar 4.6. Rangkaian Pembagi Tegangan Besarnya arus yang mengalir dalam rangkaian adalah 2 1 R R V i   Tegangan pada R1 adalah V R R R V R R V V R i V . 2 1 1 1 2 1 1 1 . 1      Tegangan pada R2 adalah V R R R V R R V V R i V . 2 1 2 2 2 1 2 2 . 2     

5.2.11 Teori Super Posisi

Teori superposisi digunakan untuk menganalisa rangkaian yang terdiri dari beberapa sumber tegangan dan tahanan. Sumber tegangan dapat berupa tegangan itu sendiri atau sumber arus. Teori superposisi memudahkan menentukan arus pada suatu cabang dengan menganggap sumber bekerja satu per satu. Arus total pada cabang tersebut merupakan jumlah aljabar dari arus tiap-tiap sumber dengan memperhatikan arah arus. Apabila mengerjakan satu sumber, maka sumber yang lain dihubung singkat untuk sumber tegangan dan dihubung terbuka untuk sumber arus. Untuk lebih jelasnya perhatikan rangkaian pada gambar 4.7 dibawah ini Gambar 4.7 rangkaian resistor dengan 2 sumber tegangan Untuk menghitung arus pada R2 dapat dilakukan dengan menghitung arus yang disebabkan V1 dan V2 secara bergantian kemudian dan hasilnya dijumlahkan . Langkah – langkah menghitung arus pada R2 adalah sebagai berikut : 1 Menghitung Arus oleh sumber tegangan V1 adalah I1, rangkaian ekivalen seperti Gambar 4.8. Gambar 4.8 rangkaian ekivalen, saat V2 dihubung singkat Dari gambar diatas diperoleh persamaan arusnya : 114 3 2 3 . 3 2 1 1 1 R R R R R R V I    2 Menghitung Arus oleh sumber tegangan V2 adalah I2, rangkaian ekivalen seperti gambar 4.9 Gambar 4.9 rangkaian ekivalen, saat V1 dihubung singkat Dari gambar diatas diperoleh persamaan arusnya : 1 2 1 . 1 2 3 2 1 R R R R R R V I    3 Menghitung Arus yang mengalir pada R2 yaitu I, yang merupakan penjumlahan dari I1 dan I2 karena arahnya sama maka I = I1 + I2