Program Komputer
7.6 Program Komputer
Dengan menggunakan program komputer m aka langkah-langkah diatas dapat d i lakukan dengan lebih mudah dan cepat. Untuk keperluan tersebut maka dibuat program komputer untuk struktur lengkung dengan menggunakan bahasa program C++. Pada program ini dibuat data input pada file bcrekstensi *txt. Setelah eksekusi program, hasil program dapat ditulis Dengan menggunakan program komputer m aka langkah-langkah diatas dapat d i lakukan dengan lebih mudah dan cepat. Untuk keperluan tersebut maka dibuat program komputer untuk struktur lengkung dengan menggunakan bahasa program C++. Pada program ini dibuat data input pada file bcrekstensi *txt. Setelah eksekusi program, hasil program dapat ditulis
doubl e f i [ EL ] , GammaA [ EL ] , GammaB [ EL ] ; void input ( ) ;
voi d d i sp_input ( ) ; void d i sp_output ( ) ;
int mai n ( )
c ou t< < " PROGRAM FOR CURVED MEMBER ANALYSI S " ; cout< < " \n = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " < <end l ;
i nput ( ) ;
d i sp_input ( ) ; cout < < " \ n Proces s i ng data . . . . . . . . . . . . . . . . . . " < <end l ;
l l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -
1 1 menghitung dof 11------------------------------------------------------------------------------
NDOF= O ;
f or ( i = O ; i <NNODE ; i + + ) { PX [ i ] = O ; PY [ i ] = O ; PR [ i ] = O ; for ( i = O ; i <NNODE ; i + + ) {
i f ( RX [ i ] = = O ) { NDOF=NDOF+ l ;
PX [ i ] =NDOF ; }
i f ( RY [ i ] = = 0 ) { NDOF=NDOF + l ;
PY [ i ] =NDOF ; }
i f ( RR [ i ] = = 0 ) { NDOF=NDOF + l ;
PR [ i ] =NDOF ; }
cout< < " \ n Total DOF = " < <NDOF<<end l ; cout< < " j oint
PX
PY
PR " < < endl ;
f o r ( i = O ; i <NNODE ; i + + ) { printf(" %2d
% 2 d % 2 d % 2 d \ n " , ( i + l ) , PX [ i ] , PY [ i ] , PR [ i ] ) ; } ll------------------------------------------------------------------------------
1 1 menghi tung matrix f l eks ibi l i tas dan matriks kekakuan relat i f 1 1 menghi tung matrix f l eks ibi l i tas dan matriks kekakuan relat i f
cout< < " \ n Process ing relat ive s t i fness matrix . . . " < <endl ;
1 1 I n i s i a l i sasi for ( i = O ; i < NMAT ; i + + ) {
f or ( j = O ; j < 3 ; j + + ) {
f or ( l = 0 ; 1 < 3 ; l + + ) { f[i] [j] [1]=0; k[i] [j
l [1] =0;} / I i s i matrix f [ i ] [ j ] dan k [ i ] [ j ]
for ( i = O ; i < NMAT ; i + + ) { f[i] [0] [O]=fll[i]; f[i] [0] [l]=f12[i];
f [i] [0] [2] =f13 [i];
f [i] [1] [0] =f12 [i]; f [i] [1] [1] =f22 [i];
f[i] [1] [2]=f23[i];
f [i] [2] [0] =f13 [i]; f [i] [2] [1] =f23 [i];
f [i] [2] [2]=f33 [i];
k [ i ] [ 0 ] [ 0 ] =k l l [ i ] ; k [ i ] [ 0 ] [ 1 ] =k 1 2 [ i ] ;
k[i] [1] [0]=k12[i];
k [ i ] [ 0 ] [ 2 ] =k13 [ i ] ; k [ i ] [ 2 ] [ 0 ] =k 1 3 [ i ] ;
1*------------------------------------------------------------------------------ Matriks kekakuan curved member
- - - - - - - - - - ·· - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * 1 cout< < " \ n Process ing abs o l u t e s i t f fness matrix . . . " << endl ;
/ /matrix trans formas i gaya Aab
f or ( i = O ; i < 6 ; i + + ) {
f or ( j = O ; j < 3 ; j + + ) {
A ab [ i ] [ j l=0; }} Aab [ O ] [ 0 ] = -cos ( the t a ) ; Aab [ O ] [ 1 ] = - s i n ( the ta ) ; Aab [ 1 ] [ O ] = s in ( the t a ) ; Aab [ 1 ] [ 1 ] = - cos ( theta ) ; Aab [ 2 ] [ 0 ] = R * ( 1 - cos ( theta ) ) ; Aab [ 2 ] [ 1 ] = -R * s i n ( theta ) ; Aab [ 2 ] [ 2 ] = - 1 ;
A ab [ 3 l [ 0 l = 1 ; Aab [ 4 l [ 1 ] = 1 ; A ab [ 5 l [ 2 l = 1 ; / / Transpose mat r i ks Aab
f or ( j = O ; j < 3 ; j + + ) {
f or ( i = O ; i < 6 ; i + + ) { TransAab [ j ] [ i ] =Aab [ i ] [ j] ; }}
/ /Abs o l u te S t i f fness for ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) {
f or ( l = O ; l < 6 ; 1 + + ) { K[i] [j] [1]=0;}}} f or ( l = O ; l < 6 ; 1 + + ) { K[i] [j] [1]=0;}}}
/ / sudut t rans forma s i
T [ i ] [ 0 ] [ O ] =cos ( GammaA [ i ] ) ; T [ i ] [ 0 ] [ 1 ] = s i n ( GammaA [ i ] ) ; T [ i ] [ 1 ] [ 0 ] = - s i n ( GammaA [ i ] ) ; T [ i ] [ 1 ] [ 1 ] =cos ( GammaA [ i ] ) ; T [ i ] [ 3 ] [ 3 ] = cos ( GammaB [ i ] ) ; T [ i ] [ 3 ] [ 4 ] = s in ( GammaB [ i ] ) ; T [ i ] [ 4 ] [ 3 ] = - s i n ( GammaB [ i ] ) ; T [ i ] [ 4 ] [ 4 ] =cos ( GammaB [ i ] ) ; T[i] [2] [2]=1;T[i] [5] [5]=1;}
/ / Transpose T
f or ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) { for (1 =0; 1<6;1++) { TransT [ i ] [ 1 ] [ j ] =T [ i ] [ j l [1]
lll
1 1 Matriks kekakuan elemen global for ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) {
f or ( l = 0 ; 1 < 6 ; 1 + + ) { for ( m= O ; m< 6 ; m+ + ) {
f o r ( n= O ; n< 6 ; n+ + ) { KG [ i ] [ j ] [ n ] + =TransT [ i ] [ j ] [ l ] * K [ i ] [ 1 ] [ m ] * T [ i ] [ m ] [ n ] ; } } } } }
1 1 Matriks kekakuan s truktur global
f or ( i = O ; i <NDOF ; i + + ) {
f or ( j = O ; j <NDOF ; j + + ) { KK [ i ] [ j ] = O ; }
//inisialisasi
f or ( i = O ; i <NEL ; i + + ) { NJ= JJ [ i ] - 1 ; NK=JK [ i ] - 1 ; P [ O ] = PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P [ 2 ] = PR [ NJ ] ; P [ 3 ] = PX [ NK ] ; P [ 4 ] = PY [ NK ] ; P [ 5 ] = PR [ NK ] ; for ( j = O ; j < 6 ; j + + ) {
for ( l = 0 ; 1 < 6 ; 1 + + ) { if( P[j]*P[l]!=O) { KK [ ( P [ j ] - 1 ) ] [ ( P [ l ] - 1 ) ] = KK [ ( P [ j ] - 1 ) ] [ ( P [ l ] - l ) ] +KG [ i ] [ j ] [ 1 ] ; } } }
1*----------------------------------------------------------------------------- Menghi tung reak s i dan gaya dal am ---------------------------------------------------------------------------*!
cout< < " \ n Processing e l ement f orces and d i s p l acement . . . . . " < <endl ;
c ou t < < end l ; / / F ixed end f orces akibat beban merata q
f or ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) { FEFq [ i ] [ j ] = 0 ; } } f or ( j = O ; j < 6 ; j + + ) { FEFq [ i ] [ j ] = 0 ; } }
% 1 0 . S e " , FEFq [ i ] [ j ] ) ; }
cou t < <endl ; } cou t < < end l ; cout< < " \ n Fixed End f orces g l obal " < <endl ;
f or l i = O ; i <NEL ; i + + ) { NL=LOAD [ i ] - 1 ; if
I ( QX [ NL ] ! =0 ) 1 1 ( QY [NL] ! = 0 ) ) {
f or ( j = O ; j < 6 ; j + + ) { for ( 1 = 0 ; 1 < 6 ; 1 + + ) { TR [ j ] [ 1 ] = 0 ; }
TR [ O ] [ 0 ] =cos ( f i [ i ] ) ; TR [ O ] [ 1 ] = - s in ( f i [ i ] ) ; TR [ 3 ] [ 3 ] =TR [ 0 ] [ 0 ] ; TR [ 3 ] [ 4 ] =TR [ 0 ] [ 1 ] ;
TR [ 1 ] [ 0 ] = s i n
I f i [ i ] ) ; TR [ 1 ] [ 1 ] =COS ( f i [ i ] ) ;
TR [ 4 ] [ 3 ] =TR [ 1 ] [ 0 ] ; TR [ 4 ] [ 4 ] =TR [ 1 ] [ 1 ] ; TR [ 2 ] [ 2 ] = 1 ; TR [ 5 ] [ 5 ] = 1;
f or ( j = O ; j < 6 ; j + + ) { for ( 1 = 0 ; 1 < 6 ; 1++) { FF [ i ] [ j ] + =TR [ j ] [ l ] * FEFq [ i ] [ 1 ] ; } / / gaya el emen g l obal print f ( "
% 1 0 . 5e " , FF [ i ] [ j ] ) ; } cout< < endl ; } } cou t < < endl ;
f or ( i = O ; i <NDOF ; i + + ) { PF [ i ] = 0 ; }
f o r ( i = O ; i <NEL ; i + + ) { NJ=JJ [ i ] - 1 ; NK= JK [ i ] - 1 ; P [ O ] =PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P [ 2 ] = PR [ NJ ] ; P [ 3 ] =PX [ NK ] ; P [ 4 ] = PY [ NK ] ; P [ S ] = PR [ NK ] ;
f or ( j = O ; j < 6 ; j + + ) { if(P[j]1=0){ PF [ P [ j ] - 1 ] = PF [ P [ j ] - 1 ] +FF [ i ] [ j ] ; } } } / /Merak i t Gaya s t ruktural
c ou t < < " \n Gaya s truktural gl obal { P } " < < endl ;
f or l i = O ; i <NNODE ; i + + ) {
f or l j = O ; j <NDOF ; j + + ) { PP [ j ] = P P [ j ] + PF [ j ] ; print f ( " \ n
% 1 0 . 5e " , PP [ j ] ) ; } cout< <endl ; 1*----------------------------------------------------------------------------- perp i ndahan
/ / perpi ndahan s t ruktural dan g l obal e lemen
f or ( i = O ; i <NDOF ; i + + ) { UU [ i ] =KP ( i ] [ NDOF ] ;
11 cout< <UU [ i ] < <end l ;
f or ( i = O ; i < NNODE ; i + + ) { P [ O ] = PX [ i ] ; P [ 1 ] = PY [ i ] ; P [ 2 ] =PR [ i ] ;
f or ( j = O ; j < 3 ; j + + ) { if(P[j]!=O){ JD [ i ] [ j ] =UU [ P [ j ] - 1 ] ; } else { JD [ i ] [ j ] = 0 ; } } }
f or ( i = O ; i <NNODE ; i + + ) {
f or ( j = O ; j < 3 ; j + + ) { p r i n t f ( " % 1 0 . 5e " , JD [ i ] [ j ] ) ; } cout< <endl ; }
f or ( i = O ; i <NEL ; i + + ) { NJ=JJ [ i ] - 1 ; NK=JK [ i ] - 1 ; P [ O ] = PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P ( 2 ] = PR [ NJ ] ; P [ 3 ] = PX [ NK ] ; P ( 4 ] = PY [ NK ] ; P [ 5 ] = PR [ NK ] ;
f or ( j = O ; j < 6 ; j + + ) { if(P[j]!=O){ U [ i ] [ j ] =UU [ P [ j ] - 1 ] ; } else { U[i][j]=O;} }} / 1 perpindahan l okal el emen
f or ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) { u[i] [j]=O; for(l=0;1<6;1++) {
u [ i ] [ j ] + =T [ i ] [ j ] [ l ] * U [ i ] [ 1 ] ; ) } } 1*-----------------------------------------------------------------------------
gaya-gaya dal am e l emen ----------------------------------------------------------------------------*1
f or ( i = O ; i <NEL ; i + + ) {
f or ( i = O ; i <NEL ; i + + ) {
f or ( j = O ; j < 6 ; j + + ) { for(l=0;1<6;1++) { FG [ i ] [ j ] + = KG [ i ] [ j ] [ l ] *U [ i ] [ 1 ] ; } } }
f or ( i = O ; i <NEL ; i + + ) { f or ( i = O ; i <NEL ; i + + ) {
f or ( i = O ; i <NNODE ; i + + ) {
f or ( j = O ; j < 3 ; j + + ) { ARJ [i] [j] =0;}}
f or ( i = O ; i <NNODE ; i + + ) { P [ O ] =MDX [ i ] ; P [ 1 ] =MDY [ i ] ; P [ 2 ] =MDR [ i ] ;
f or ( j = O ; j < 3 ; j + + ) { if(P[j] !=0) {
ARJ [ i ] [ j ] = RG [ P [ j ] - 1 ] ; } } }
f or ( i = O ; i <NNODE ; i + + ) {
i f ( RX [ i ] = = 1 ) { ARJ [ i ] [ 0 ] =ARJ [ i ] [ 0 ] -FX [ i ] ;
i f ( RY [ i ] = = 1 ) { ARJ [ i ] [ 1 ] =ARJ [ i ] [ 1 ] - FY [ i ] ;
i f ( RR [ i ] = = l ) { ARJ [ i ] [ 2 ] =ARJ [ i ] [ 2 ] -MZ [ i ] ;
cout< < " \n Program sukses di ekseku s i ! ! " ; cout< < " \ n
Has i l eksekus i d i l ihat pacta arsip has i l " < <end l ; di sp_output ( ) ; getch ( ) ;
sys t em ( " PAUS E " ) ; return 0 ;
I I = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = = = = ! I vo i d input ( ) {
char F i l ename [ 3 0 ] cout< < " \n Masukkan nama ars i p data
c in > >F i l ename ;
i fs tream i np ;
i np . open ( F i l ename ) ;
i f ( ! inp ) { cout< < " \nFi l e ' " < < F i l ename < < " t i dak ada .
cout<< " \n Program d i henti kan . " ; getch ( ) ; exi t ( 0 ) ;
} cout<< " \ n Membaca i nput data . . . . . . . " ; char endl [ 8 0 ] ;
f o r ( i = O ; i <ND ; i + + ) { X[i]=O;Y[i]=O; f o r ( i = O ; i <ND ; i + + ) { X[i]=O;Y[i]=O;
f or ( i � O ; i <NEL ; i + + ) {
inp>>JJ [ i ] ; inp> > JK [ i ] ; inp>>MAT [ i ] ; i np>>LOAD [ i ] ; i np . ge t l i ne ( endl , s i zeo f ( endl ) ) ; } inp . ge t l ine ( endl , s i zeo f ( endl ) ) ; inp . i gnore ( l O ) ; i np> >NF ; inp . ge t l ine ( endl , s i ze o f ( endl ) ) ;
f o r ( i � O ; i <NF ; i + + ) { inp >>NJF [ i ] ; inp>>FX [ NJF [ i ] - l ] ; inp>>FY [ NJF [ i ] - l ] ; i np>>MZ [ NJF [ i ] -
1 ] ; inp . ge t l ine ( endl , s i zeo f ( endl ) ) ; }
i np . c l ose ( ) ;
1/------------------------------------------------------------------------------ void di sp_input ( ) { cout<<endl ; cout<< " \n DATA DARI ARS I P DATA " ; cout<< " \n� � � � � � � � � � � � � � � � � � � � � � � � � " <<endl ; print f ( " Jari - j ar i l engkung
%10.5f m\n",R);
p r i n t f ( " Sudut total
% 1 0 . 5 f radian \n " , angle ) ;
p r i n t f ( " Jumlah nodal
%2d \ n " , NNODE ) ;
print f ( " Jumlah e l emen
% 2 d \ n " , NE L ) ;
print f ( " theta % 1 0 . 5 f radi an\n " , ( angl e /NEL ) ) ; print f ( " Jumlah t i t i k terkekang
% 2 d \ n " , NR ) ;
print f ( " \ nJoint
Restraint \ n " ) ;
for ( i � O ; i <NNODE ; i + + ) { printf(" %2d
% 2 d % 2 d % 2 d \ n " , ( i + l ) , RX [ i ] , RY [ i ] , RR [ i ] ) ;
p r i n t f ( " Node Coordinates \ n " ) ;
f o r ( i � O ; i <NNODE ; i + + ) { print f ( " % 2 d
%10.5f
%10.5f
\n", (i+l) ,X[i],Y[i]);
print f ( " \n Sec t i on property \ n " ) ; print f ( "
E A I \n");
for ( i � O ; i <NMAT ; i + + ) { p r i n t f ( " % 2 d % 1 0 . 5e kN/m2 % 1 0 . 5e m2 % 1 0 . 5e m4 \ n " , ( i + l ) , E [ i ] , A [ i ] , I [ i ] ) ; p r i n t f ( " \ n E l ement Loads \ n " ) ; p r i n t f ( " Uni form l oad \ n " ) ;
f or ( i � O ; i <NLOAD ; i + + ) { p r i n t f ( " % 2 d QX� % 1 0 . 5 f QY�% 1 0 . 5 f \ n " , ( i + l ) , QX [ i ] , QY [ i ] ) ; print f ( " \n Nodal Forces
\n");
p r i n t f ( " Joint FX
FY
MZ \ n " ) ;
f o r ( i � O ; i <NNODE ; i + + ) { print f ( " % 2 d % 1 0 . 5 f % 1 0 . 5 f
% 1 0 . 5 f \ n " , ( i + l ) , FX [ i ] , FY [ i ] , MZ [ i ] ) ; % 1 0 . 5 f \ n " , ( i + l ) , FX [ i ] , FY [ i ] , MZ [ i ] ) ;
% 2 d \ n " , NNODE ) ;
fprint f ( out , " Total e lement
% 2 d \ n " , NEL ) ;
fprin t f ( ou t , " thet a % 1 0 . 5 f rad i an \n " , ( angle /NEL ) ) ; fprint f ( ou t , " \n Sec t i on p roperty \ n " ) ; fpr i n t f ( ou t , " NM
E A I \n");
f or ( i = O ; i <NMAT ; i + + ) { fprint f ( out , " % 2d % 1 0 . 5e kN /m2 % 1 0 . 5e m2 % 1 0 . 5e m4 \ n " , ( i + l ) , E [ i ] , A [ i ] , I [ i ] ) ; fprint f ( out , " \n Uni form span l oad \ n " ) ; fprint f ( ou t , "NL
for ( i = O ; i <NLOAD ; i + + ) { fprint f ( ou t , " % 2 d % 1 0 . 5e kN / m % 1 0 . 5e KN/ m \ n " , ( i + 1 ) , QX [ i ] . QY [ i ] ) ; fprint f ( ou t , " \n Nodal Forces \ n " ) ; fprin t f ( ou t , " NF
f or ( i = O ; i <NF ; i + + ) { fprint f ( ou t , " % 2d
1 ] , FY [ NJF [ i ] - 1 ] , MZ [ NJF [ i ] - 1 ] ) ; } fpri n t f ( out , " \ n Joint
Res traint \ n " ) ;
for ( i = O ; i <NNODE ; i + + ) { fprint f ( out , " % 2 d
% 2 d % 2 d % 2 d \ n " , ( i + 1 ) , RX [ i ] , RY [ i ] , RR [ i ] ) ; fprint f ( out , " \ n Node Coordi nates \ n " ) ; for ( i = O ; i <NNODE ; i + + ) {
fprint f ( out , " % 2 d
%10.5f
%10.5f
\n", (i+l) ,X[i],Y[i]);
fpri n t f ( ou t , " \n E l ement Proper t i e s " ) fprint f ( ou t , " \n E l
NL\n " ) ;
for ( i = O ; i <NEL ; i + + ) { fpr i n t f ( ou t , "
%2d %2d \n" , ( i + 1 ) , J J [ i ] , JK [ i ] , MAT [ i ] , LOAD [ i ] ) ; fpri n t f ( ou t , " \n Curved member f lexibi l i ty mat r i x \ n " ) ; fprint f ( out , "
f or ( i = O ; i <NMAT ; i + + ) { fpri n t f ( ou t , " Ma t r i ks f leksibi l i tas materi a l % 2 d \n " , ( i + 1 ) ) ; for (j=O;j<3;j++){
f or ( l = 0 ; 1 < 3 ; 1 + + ) { fprint f ( ou t , "
% 1 5 . 5e " , f [ i ] [ j ] [ l ] ) ;
f p r i n t f ( ou t , " \n " ) ; } fpr i n t f ( ou t , " \n " ) ; } fp r i n t f ( ou t , " \ n " ) ; fpri n t f ( out , " \ n Curved member r e l a tive s t i f fness matrix \ n " ) ; fprint f ( ou t , "
\n " );
f or ( i = O ; i<NMAT ; i + + ) { fprintf ( ou t , " Matri ks S t i f fness relati f material % 2 d \ n " , ( i + 1 ) ) ; for ( j = O ; j < 3 ; j + + ) {
f or ( l = 0 ; 1 < 3 ; 1 + + ) { fpri n t f ( ou t , "
% 1 5 . 5e " , k [ i ] [ j ] [ l ] ) ;
fprint f ( ou t , " \ n " ) ; } fp r i n t f ( out , " \ n " ) ; } fprint f ( ou t , " \ n " ) ; } fp r i n t f ( out , " \ n " ) ; }
f or ( i = O ; i <NDOF ; i + + ) {
f o r ( j = O ; j <NDOF ; j + + ) { fprint f ( out , "
% l O . Se " , KK [ i ] [ j ] ) ;
f pr i n t f ( ou t , " \ n " ) ; } fprint f ( out , " \n Joint displ acement \ n " ) ; fprint f ( ou t , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( ou t , " Jo i n t
f or ( i = O ; i <NNODE ; i + + ) { fpri n t f ( ou t , " % 2 d " , ( i + l ) ) ;
f or ( j = O ; j < 3 ; j + + ) { fpri n t f ( ou t , "
% l O . Se " , JD [ i ] [ j ] ) ; }
fpr i n t f ( ou t , " \ n " ) ; } fprint f ( ou t , " \n Perpindahan e l emen s truktur \ n " ) fpri n t f ( out , " = = = = = = = = = = == = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( out , " el
f or ( i = O ; i <NEL ; i + + ) { fprint f ( ou t , " % 2 d . " , ( i + l l ) ; for (j=O;j<6;j++) { fprint f ( out , "
% l O . Se " , U [ i ] [ j ] ) ;
} fpr i n t f ( ou t , " \ n " ) ; } fprint f ( out , " \n " ) ;
fprin t f ( ou t , " \n Perp indahan e l emen l okal \ n " ) ; fpr i n t f ( ou t , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \n " ) ; fprint f ( out , " e l
U6\n"); for ( i = O ; i <NEL ; i + + ) { fprint f ( out , " % 2d . " , ( i + l ) ) ; for (j=O;j<6;j++){ fprint f ( ou t , "
} fprint f ( out , " \n " ) ; } fprint f ( ou t , " \n " ) ;
fpr i n t f ( ou t , " \ n Gaya dal am e l emen \ n " ) ; fpri n t f ( out , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( ou t , " e l
F2 F3 F4 FS F6\n") for ( i = O ; i <NEL ; i + + ) { fprin t f ( ou t , " % 2 d . " , ( i + l ) ) ; for (j=O;j<3;j++) { fprint f ( out , "
Fl
% 1 0 . 5e " , F [ i ] [ j ] ) ; }
for ( j = 3 ; j < 6 ; j + + ) { fprintf ( ou t , "
% 10.5e",(-F[i][j]));
} fprin t f ( ou t , " \ n " ) ; } fprint f ( ou t , " \ n End reac t i on \ n " ) ;
Input F i l e program S t i f fness untuk e l emen l engkung Angl e
R 1.0472
15 NNode
:5 coordinates -7.5 -3.8823
Gaya dalam elemen dan reaksi perletakan yang diperoleh dari running program adalah sebagai berikut :
Joint di splacement
Joint U1
U2
R3
1 O.OOOOOe+OO
O.OOOOOe+OO
O.OOOOOe+OO
2 -1.11754e-03
5 O.OOOOOe+OO
O.OOOOOe+OO
O.OOOOOe+OO
Ga a
Aksial
Geser
M omen