Program Komputer

7.6 Program Komputer

Dengan menggunakan program komputer m aka langkah-langkah diatas dapat d i lakukan dengan lebih mudah dan cepat. Untuk keperluan tersebut maka dibuat program komputer untuk struktur lengkung dengan menggunakan bahasa program C++. Pada program ini dibuat data input pada file bcrekstensi *txt. Setelah eksekusi program, hasil program dapat ditulis Dengan menggunakan program komputer m aka langkah-langkah diatas dapat d i lakukan dengan lebih mudah dan cepat. Untuk keperluan tersebut maka dibuat program komputer untuk struktur lengkung dengan menggunakan bahasa program C++. Pada program ini dibuat data input pada file bcrekstensi *txt. Setelah eksekusi program, hasil program dapat ditulis

doubl e f i [ EL ] , GammaA [ EL ] , GammaB [ EL ] ; void input ( ) ;

voi d d i sp_input ( ) ; void d i sp_output ( ) ;

int mai n ( )

c ou t< < " PROGRAM FOR CURVED MEMBER ANALYSI S " ; cout< < " \n = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " < <end l ;

i nput ( ) ;

d i sp_input ( ) ; cout < < " \ n Proces s i ng data . . . . . . . . . . . . . . . . . . " < <end l ;

l l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -

1 1 menghitung dof 11------------------------------------------------------------------------------

NDOF= O ;

f or ( i = O ; i <NNODE ; i + + ) { PX [ i ] = O ; PY [ i ] = O ; PR [ i ] = O ; for ( i = O ; i <NNODE ; i + + ) {

i f ( RX [ i ] = = O ) { NDOF=NDOF+ l ;

PX [ i ] =NDOF ; }

i f ( RY [ i ] = = 0 ) { NDOF=NDOF + l ;

PY [ i ] =NDOF ; }

i f ( RR [ i ] = = 0 ) { NDOF=NDOF + l ;

PR [ i ] =NDOF ; }

cout< < " \ n Total DOF = " < <NDOF<<end l ; cout< < " j oint

PX

PY

PR " < < endl ;

f o r ( i = O ; i <NNODE ; i + + ) { printf(" %2d

% 2 d % 2 d % 2 d \ n " , ( i + l ) , PX [ i ] , PY [ i ] , PR [ i ] ) ; } ll------------------------------------------------------------------------------

1 1 menghi tung matrix f l eks ibi l i tas dan matriks kekakuan relat i f 1 1 menghi tung matrix f l eks ibi l i tas dan matriks kekakuan relat i f

cout< < " \ n Process ing relat ive s t i fness matrix . . . " < <endl ;

1 1 I n i s i a l i sasi for ( i = O ; i < NMAT ; i + + ) {

f or ( j = O ; j < 3 ; j + + ) {

f or ( l = 0 ; 1 < 3 ; l + + ) { f[i] [j] [1]=0; k[i] [j

l [1] =0;} / I i s i matrix f [ i ] [ j ] dan k [ i ] [ j ]

for ( i = O ; i < NMAT ; i + + ) { f[i] [0] [O]=fll[i]; f[i] [0] [l]=f12[i];

f [i] [0] [2] =f13 [i];

f [i] [1] [0] =f12 [i]; f [i] [1] [1] =f22 [i];

f[i] [1] [2]=f23[i];

f [i] [2] [0] =f13 [i]; f [i] [2] [1] =f23 [i];

f [i] [2] [2]=f33 [i];

k [ i ] [ 0 ] [ 0 ] =k l l [ i ] ; k [ i ] [ 0 ] [ 1 ] =k 1 2 [ i ] ;

k[i] [1] [0]=k12[i];

k [ i ] [ 0 ] [ 2 ] =k13 [ i ] ; k [ i ] [ 2 ] [ 0 ] =k 1 3 [ i ] ;

1*------------------------------------------------------------------------------ Matriks kekakuan curved member

- - - - - - - - - - ·· - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * 1 cout< < " \ n Process ing abs o l u t e s i t f fness matrix . . . " << endl ;

/ /matrix trans formas i gaya Aab

f or ( i = O ; i < 6 ; i + + ) {

f or ( j = O ; j < 3 ; j + + ) {

A ab [ i ] [ j l=0; }} Aab [ O ] [ 0 ] = -cos ( the t a ) ; Aab [ O ] [ 1 ] = - s i n ( the ta ) ; Aab [ 1 ] [ O ] = s in ( the t a ) ; Aab [ 1 ] [ 1 ] = - cos ( theta ) ; Aab [ 2 ] [ 0 ] = R * ( 1 - cos ( theta ) ) ; Aab [ 2 ] [ 1 ] = -R * s i n ( theta ) ; Aab [ 2 ] [ 2 ] = - 1 ;

A ab [ 3 l [ 0 l = 1 ; Aab [ 4 l [ 1 ] = 1 ; A ab [ 5 l [ 2 l = 1 ; / / Transpose mat r i ks Aab

f or ( j = O ; j < 3 ; j + + ) {

f or ( i = O ; i < 6 ; i + + ) { TransAab [ j ] [ i ] =Aab [ i ] [ j] ; }}

/ /Abs o l u te S t i f fness for ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) {

f or ( l = O ; l < 6 ; 1 + + ) { K[i] [j] [1]=0;}}} f or ( l = O ; l < 6 ; 1 + + ) { K[i] [j] [1]=0;}}}

/ / sudut t rans forma s i

T [ i ] [ 0 ] [ O ] =cos ( GammaA [ i ] ) ; T [ i ] [ 0 ] [ 1 ] = s i n ( GammaA [ i ] ) ; T [ i ] [ 1 ] [ 0 ] = - s i n ( GammaA [ i ] ) ; T [ i ] [ 1 ] [ 1 ] =cos ( GammaA [ i ] ) ; T [ i ] [ 3 ] [ 3 ] = cos ( GammaB [ i ] ) ; T [ i ] [ 3 ] [ 4 ] = s in ( GammaB [ i ] ) ; T [ i ] [ 4 ] [ 3 ] = - s i n ( GammaB [ i ] ) ; T [ i ] [ 4 ] [ 4 ] =cos ( GammaB [ i ] ) ; T[i] [2] [2]=1;T[i] [5] [5]=1;}

/ / Transpose T

f or ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) { for (1 =0; 1<6;1++) { TransT [ i ] [ 1 ] [ j ] =T [ i ] [ j l [1]

lll

1 1 Matriks kekakuan elemen global for ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) {

f or ( l = 0 ; 1 < 6 ; 1 + + ) { for ( m= O ; m< 6 ; m+ + ) {

f o r ( n= O ; n< 6 ; n+ + ) { KG [ i ] [ j ] [ n ] + =TransT [ i ] [ j ] [ l ] * K [ i ] [ 1 ] [ m ] * T [ i ] [ m ] [ n ] ; } } } } }

1 1 Matriks kekakuan s truktur global

f or ( i = O ; i <NDOF ; i + + ) {

f or ( j = O ; j <NDOF ; j + + ) { KK [ i ] [ j ] = O ; }

//inisialisasi

f or ( i = O ; i <NEL ; i + + ) { NJ= JJ [ i ] - 1 ; NK=JK [ i ] - 1 ; P [ O ] = PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P [ 2 ] = PR [ NJ ] ; P [ 3 ] = PX [ NK ] ; P [ 4 ] = PY [ NK ] ; P [ 5 ] = PR [ NK ] ; for ( j = O ; j < 6 ; j + + ) {

for ( l = 0 ; 1 < 6 ; 1 + + ) { if( P[j]*P[l]!=O) { KK [ ( P [ j ] - 1 ) ] [ ( P [ l ] - 1 ) ] = KK [ ( P [ j ] - 1 ) ] [ ( P [ l ] - l ) ] +KG [ i ] [ j ] [ 1 ] ; } } }

1*----------------------------------------------------------------------------- Menghi tung reak s i dan gaya dal am ---------------------------------------------------------------------------*!

cout< < " \ n Processing e l ement f orces and d i s p l acement . . . . . " < <endl ;

c ou t < < end l ; / / F ixed end f orces akibat beban merata q

f or ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) { FEFq [ i ] [ j ] = 0 ; } } f or ( j = O ; j < 6 ; j + + ) { FEFq [ i ] [ j ] = 0 ; } }

% 1 0 . S e " , FEFq [ i ] [ j ] ) ; }

cou t < <endl ; } cou t < < end l ; cout< < " \ n Fixed End f orces g l obal " < <endl ;

f or l i = O ; i <NEL ; i + + ) { NL=LOAD [ i ] - 1 ; if

I ( QX [ NL ] ! =0 ) 1 1 ( QY [NL] ! = 0 ) ) {

f or ( j = O ; j < 6 ; j + + ) { for ( 1 = 0 ; 1 < 6 ; 1 + + ) { TR [ j ] [ 1 ] = 0 ; }

TR [ O ] [ 0 ] =cos ( f i [ i ] ) ; TR [ O ] [ 1 ] = - s in ( f i [ i ] ) ; TR [ 3 ] [ 3 ] =TR [ 0 ] [ 0 ] ; TR [ 3 ] [ 4 ] =TR [ 0 ] [ 1 ] ;

TR [ 1 ] [ 0 ] = s i n

I f i [ i ] ) ; TR [ 1 ] [ 1 ] =COS ( f i [ i ] ) ;

TR [ 4 ] [ 3 ] =TR [ 1 ] [ 0 ] ; TR [ 4 ] [ 4 ] =TR [ 1 ] [ 1 ] ; TR [ 2 ] [ 2 ] = 1 ; TR [ 5 ] [ 5 ] = 1;

f or ( j = O ; j < 6 ; j + + ) { for ( 1 = 0 ; 1 < 6 ; 1++) { FF [ i ] [ j ] + =TR [ j ] [ l ] * FEFq [ i ] [ 1 ] ; } / / gaya el emen g l obal print f ( "

% 1 0 . 5e " , FF [ i ] [ j ] ) ; } cout< < endl ; } } cou t < < endl ;

f or ( i = O ; i <NDOF ; i + + ) { PF [ i ] = 0 ; }

f o r ( i = O ; i <NEL ; i + + ) { NJ=JJ [ i ] - 1 ; NK= JK [ i ] - 1 ; P [ O ] =PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P [ 2 ] = PR [ NJ ] ; P [ 3 ] =PX [ NK ] ; P [ 4 ] = PY [ NK ] ; P [ S ] = PR [ NK ] ;

f or ( j = O ; j < 6 ; j + + ) { if(P[j]1=0){ PF [ P [ j ] - 1 ] = PF [ P [ j ] - 1 ] +FF [ i ] [ j ] ; } } } / /Merak i t Gaya s t ruktural

c ou t < < " \n Gaya s truktural gl obal { P } " < < endl ;

f or l i = O ; i <NNODE ; i + + ) {

f or l j = O ; j <NDOF ; j + + ) { PP [ j ] = P P [ j ] + PF [ j ] ; print f ( " \ n

% 1 0 . 5e " , PP [ j ] ) ; } cout< <endl ; 1*----------------------------------------------------------------------------- perp i ndahan

/ / perpi ndahan s t ruktural dan g l obal e lemen

f or ( i = O ; i <NDOF ; i + + ) { UU [ i ] =KP ( i ] [ NDOF ] ;

11 cout< <UU [ i ] < <end l ;

f or ( i = O ; i < NNODE ; i + + ) { P [ O ] = PX [ i ] ; P [ 1 ] = PY [ i ] ; P [ 2 ] =PR [ i ] ;

f or ( j = O ; j < 3 ; j + + ) { if(P[j]!=O){ JD [ i ] [ j ] =UU [ P [ j ] - 1 ] ; } else { JD [ i ] [ j ] = 0 ; } } }

f or ( i = O ; i <NNODE ; i + + ) {

f or ( j = O ; j < 3 ; j + + ) { p r i n t f ( " % 1 0 . 5e " , JD [ i ] [ j ] ) ; } cout< <endl ; }

f or ( i = O ; i <NEL ; i + + ) { NJ=JJ [ i ] - 1 ; NK=JK [ i ] - 1 ; P [ O ] = PX [ NJ ] ; P [ 1 ] = PY [ NJ ] ; P ( 2 ] = PR [ NJ ] ; P [ 3 ] = PX [ NK ] ; P ( 4 ] = PY [ NK ] ; P [ 5 ] = PR [ NK ] ;

f or ( j = O ; j < 6 ; j + + ) { if(P[j]!=O){ U [ i ] [ j ] =UU [ P [ j ] - 1 ] ; } else { U[i][j]=O;} }} / 1 perpindahan l okal el emen

f or ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) { u[i] [j]=O; for(l=0;1<6;1++) {

u [ i ] [ j ] + =T [ i ] [ j ] [ l ] * U [ i ] [ 1 ] ; ) } } 1*-----------------------------------------------------------------------------

gaya-gaya dal am e l emen ----------------------------------------------------------------------------*1

f or ( i = O ; i <NEL ; i + + ) {

f or ( i = O ; i <NEL ; i + + ) {

f or ( j = O ; j < 6 ; j + + ) { for(l=0;1<6;1++) { FG [ i ] [ j ] + = KG [ i ] [ j ] [ l ] *U [ i ] [ 1 ] ; } } }

f or ( i = O ; i <NEL ; i + + ) { f or ( i = O ; i <NEL ; i + + ) {

f or ( i = O ; i <NNODE ; i + + ) {

f or ( j = O ; j < 3 ; j + + ) { ARJ [i] [j] =0;}}

f or ( i = O ; i <NNODE ; i + + ) { P [ O ] =MDX [ i ] ; P [ 1 ] =MDY [ i ] ; P [ 2 ] =MDR [ i ] ;

f or ( j = O ; j < 3 ; j + + ) { if(P[j] !=0) {

ARJ [ i ] [ j ] = RG [ P [ j ] - 1 ] ; } } }

f or ( i = O ; i <NNODE ; i + + ) {

i f ( RX [ i ] = = 1 ) { ARJ [ i ] [ 0 ] =ARJ [ i ] [ 0 ] -FX [ i ] ;

i f ( RY [ i ] = = 1 ) { ARJ [ i ] [ 1 ] =ARJ [ i ] [ 1 ] - FY [ i ] ;

i f ( RR [ i ] = = l ) { ARJ [ i ] [ 2 ] =ARJ [ i ] [ 2 ] -MZ [ i ] ;

cout< < " \n Program sukses di ekseku s i ! ! " ; cout< < " \ n

Has i l eksekus i d i l ihat pacta arsip has i l " < <end l ; di sp_output ( ) ; getch ( ) ;

sys t em ( " PAUS E " ) ; return 0 ;

I I = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = = = = ! I vo i d input ( ) {

char F i l ename [ 3 0 ] cout< < " \n Masukkan nama ars i p data

c in > >F i l ename ;

i fs tream i np ;

i np . open ( F i l ename ) ;

i f ( ! inp ) { cout< < " \nFi l e ' " < < F i l ename < < " t i dak ada .

cout<< " \n Program d i henti kan . " ; getch ( ) ; exi t ( 0 ) ;

} cout<< " \ n Membaca i nput data . . . . . . . " ; char endl [ 8 0 ] ;

f o r ( i = O ; i <ND ; i + + ) { X[i]=O;Y[i]=O; f o r ( i = O ; i <ND ; i + + ) { X[i]=O;Y[i]=O;

f or ( i � O ; i <NEL ; i + + ) {

inp>>JJ [ i ] ; inp> > JK [ i ] ; inp>>MAT [ i ] ; i np>>LOAD [ i ] ; i np . ge t l i ne ( endl , s i zeo f ( endl ) ) ; } inp . ge t l ine ( endl , s i zeo f ( endl ) ) ; inp . i gnore ( l O ) ; i np> >NF ; inp . ge t l ine ( endl , s i ze o f ( endl ) ) ;

f o r ( i � O ; i <NF ; i + + ) { inp >>NJF [ i ] ; inp>>FX [ NJF [ i ] - l ] ; inp>>FY [ NJF [ i ] - l ] ; i np>>MZ [ NJF [ i ] -

1 ] ; inp . ge t l ine ( endl , s i zeo f ( endl ) ) ; }

i np . c l ose ( ) ;

1/------------------------------------------------------------------------------ void di sp_input ( ) { cout<<endl ; cout<< " \n DATA DARI ARS I P DATA " ; cout<< " \n� � � � � � � � � � � � � � � � � � � � � � � � � " <<endl ; print f ( " Jari - j ar i l engkung

%10.5f m\n",R);

p r i n t f ( " Sudut total

% 1 0 . 5 f radian \n " , angle ) ;

p r i n t f ( " Jumlah nodal

%2d \ n " , NNODE ) ;

print f ( " Jumlah e l emen

% 2 d \ n " , NE L ) ;

print f ( " theta % 1 0 . 5 f radi an\n " , ( angl e /NEL ) ) ; print f ( " Jumlah t i t i k terkekang

% 2 d \ n " , NR ) ;

print f ( " \ nJoint

Restraint \ n " ) ;

for ( i � O ; i <NNODE ; i + + ) { printf(" %2d

% 2 d % 2 d % 2 d \ n " , ( i + l ) , RX [ i ] , RY [ i ] , RR [ i ] ) ;

p r i n t f ( " Node Coordinates \ n " ) ;

f o r ( i � O ; i <NNODE ; i + + ) { print f ( " % 2 d

%10.5f

%10.5f

\n", (i+l) ,X[i],Y[i]);

print f ( " \n Sec t i on property \ n " ) ; print f ( "

E A I \n");

for ( i � O ; i <NMAT ; i + + ) { p r i n t f ( " % 2 d % 1 0 . 5e kN/m2 % 1 0 . 5e m2 % 1 0 . 5e m4 \ n " , ( i + l ) , E [ i ] , A [ i ] , I [ i ] ) ; p r i n t f ( " \ n E l ement Loads \ n " ) ; p r i n t f ( " Uni form l oad \ n " ) ;

f or ( i � O ; i <NLOAD ; i + + ) { p r i n t f ( " % 2 d QX� % 1 0 . 5 f QY�% 1 0 . 5 f \ n " , ( i + l ) , QX [ i ] , QY [ i ] ) ; print f ( " \n Nodal Forces

\n");

p r i n t f ( " Joint FX

FY

MZ \ n " ) ;

f o r ( i � O ; i <NNODE ; i + + ) { print f ( " % 2 d % 1 0 . 5 f % 1 0 . 5 f

% 1 0 . 5 f \ n " , ( i + l ) , FX [ i ] , FY [ i ] , MZ [ i ] ) ; % 1 0 . 5 f \ n " , ( i + l ) , FX [ i ] , FY [ i ] , MZ [ i ] ) ;

% 2 d \ n " , NNODE ) ;

fprint f ( out , " Total e lement

% 2 d \ n " , NEL ) ;

fprin t f ( ou t , " thet a % 1 0 . 5 f rad i an \n " , ( angle /NEL ) ) ; fprint f ( ou t , " \n Sec t i on p roperty \ n " ) ; fpr i n t f ( ou t , " NM

E A I \n");

f or ( i = O ; i <NMAT ; i + + ) { fprint f ( out , " % 2d % 1 0 . 5e kN /m2 % 1 0 . 5e m2 % 1 0 . 5e m4 \ n " , ( i + l ) , E [ i ] , A [ i ] , I [ i ] ) ; fprint f ( out , " \n Uni form span l oad \ n " ) ; fprint f ( ou t , "NL

for ( i = O ; i <NLOAD ; i + + ) { fprint f ( ou t , " % 2 d % 1 0 . 5e kN / m % 1 0 . 5e KN/ m \ n " , ( i + 1 ) , QX [ i ] . QY [ i ] ) ; fprint f ( ou t , " \n Nodal Forces \ n " ) ; fprin t f ( ou t , " NF

f or ( i = O ; i <NF ; i + + ) { fprint f ( ou t , " % 2d

1 ] , FY [ NJF [ i ] - 1 ] , MZ [ NJF [ i ] - 1 ] ) ; } fpri n t f ( out , " \ n Joint

Res traint \ n " ) ;

for ( i = O ; i <NNODE ; i + + ) { fprint f ( out , " % 2 d

% 2 d % 2 d % 2 d \ n " , ( i + 1 ) , RX [ i ] , RY [ i ] , RR [ i ] ) ; fprint f ( out , " \ n Node Coordi nates \ n " ) ; for ( i = O ; i <NNODE ; i + + ) {

fprint f ( out , " % 2 d

%10.5f

%10.5f

\n", (i+l) ,X[i],Y[i]);

fpri n t f ( ou t , " \n E l ement Proper t i e s " ) fprint f ( ou t , " \n E l

NL\n " ) ;

for ( i = O ; i <NEL ; i + + ) { fpr i n t f ( ou t , "

%2d %2d \n" , ( i + 1 ) , J J [ i ] , JK [ i ] , MAT [ i ] , LOAD [ i ] ) ; fpri n t f ( ou t , " \n Curved member f lexibi l i ty mat r i x \ n " ) ; fprint f ( out , "

f or ( i = O ; i <NMAT ; i + + ) { fpri n t f ( ou t , " Ma t r i ks f leksibi l i tas materi a l % 2 d \n " , ( i + 1 ) ) ; for (j=O;j<3;j++){

f or ( l = 0 ; 1 < 3 ; 1 + + ) { fprint f ( ou t , "

% 1 5 . 5e " , f [ i ] [ j ] [ l ] ) ;

f p r i n t f ( ou t , " \n " ) ; } fpr i n t f ( ou t , " \n " ) ; } fp r i n t f ( ou t , " \ n " ) ; fpri n t f ( out , " \ n Curved member r e l a tive s t i f fness matrix \ n " ) ; fprint f ( ou t , "

\n " );

f or ( i = O ; i<NMAT ; i + + ) { fprintf ( ou t , " Matri ks S t i f fness relati f material % 2 d \ n " , ( i + 1 ) ) ; for ( j = O ; j < 3 ; j + + ) {

f or ( l = 0 ; 1 < 3 ; 1 + + ) { fpri n t f ( ou t , "

% 1 5 . 5e " , k [ i ] [ j ] [ l ] ) ;

fprint f ( ou t , " \ n " ) ; } fp r i n t f ( out , " \ n " ) ; } fprint f ( ou t , " \ n " ) ; } fp r i n t f ( out , " \ n " ) ; }

f or ( i = O ; i <NDOF ; i + + ) {

f o r ( j = O ; j <NDOF ; j + + ) { fprint f ( out , "

% l O . Se " , KK [ i ] [ j ] ) ;

f pr i n t f ( ou t , " \ n " ) ; } fprint f ( out , " \n Joint displ acement \ n " ) ; fprint f ( ou t , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( ou t , " Jo i n t

f or ( i = O ; i <NNODE ; i + + ) { fpri n t f ( ou t , " % 2 d " , ( i + l ) ) ;

f or ( j = O ; j < 3 ; j + + ) { fpri n t f ( ou t , "

% l O . Se " , JD [ i ] [ j ] ) ; }

fpr i n t f ( ou t , " \ n " ) ; } fprint f ( ou t , " \n Perpindahan e l emen s truktur \ n " ) fpri n t f ( out , " = = = = = = = = = = == = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( out , " el

f or ( i = O ; i <NEL ; i + + ) { fprint f ( ou t , " % 2 d . " , ( i + l l ) ; for (j=O;j<6;j++) { fprint f ( out , "

% l O . Se " , U [ i ] [ j ] ) ;

} fpr i n t f ( ou t , " \ n " ) ; } fprint f ( out , " \n " ) ;

fprin t f ( ou t , " \n Perp indahan e l emen l okal \ n " ) ; fpr i n t f ( ou t , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \n " ) ; fprint f ( out , " e l

U6\n"); for ( i = O ; i <NEL ; i + + ) { fprint f ( out , " % 2d . " , ( i + l ) ) ; for (j=O;j<6;j++){ fprint f ( ou t , "

} fprint f ( out , " \n " ) ; } fprint f ( ou t , " \n " ) ;

fpr i n t f ( ou t , " \ n Gaya dal am e l emen \ n " ) ; fpri n t f ( out , " = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \ n " ) ; fprint f ( ou t , " e l

F2 F3 F4 FS F6\n") for ( i = O ; i <NEL ; i + + ) { fprin t f ( ou t , " % 2 d . " , ( i + l ) ) ; for (j=O;j<3;j++) { fprint f ( out , "

Fl

% 1 0 . 5e " , F [ i ] [ j ] ) ; }

for ( j = 3 ; j < 6 ; j + + ) { fprintf ( ou t , "

% 10.5e",(-F[i][j]));

} fprin t f ( ou t , " \ n " ) ; } fprint f ( ou t , " \ n End reac t i on \ n " ) ;

Input F i l e program S t i f fness untuk e l emen l engkung Angl e

R 1.0472

15 NNode

:5 coordinates -7.5 -3.8823

Gaya dalam elemen dan reaksi perletakan yang diperoleh dari running program adalah sebagai berikut :

Joint di splacement

Joint U1

U2

R3

1 O.OOOOOe+OO

O.OOOOOe+OO

O.OOOOOe+OO

2 -1.11754e-03

5 O.OOOOOe+OO

O.OOOOOe+OO

O.OOOOOe+OO

Ga a

Aksial

Geser

M omen

Dokumen yang terkait

Analisis Komparasi Internet Financial Local Government Reporting Pada Website Resmi Kabupaten dan Kota di Jawa Timur The Comparison Analysis of Internet Financial Local Government Reporting on Official Website of Regency and City in East Java

19 819 7

Analisis komparatif rasio finansial ditinjau dari aturan depkop dengan standar akuntansi Indonesia pada laporan keuanagn tahun 1999 pusat koperasi pegawai

15 355 84

Analisis Komposisi Struktur Modal Pada PT Bank Syariah Mandiri (The Analysis of Capital Structure Composition at PT Bank Syariah Mandiri)

23 288 6

FREKWENSI PESAN PEMELIHARAAN KESEHATAN DALAM IKLAN LAYANAN MASYARAKAT Analisis Isi pada Empat Versi ILM Televisi Tanggap Flu Burung Milik Komnas FBPI

10 189 3

Analisis Sistem Pengendalian Mutu dan Perencanaan Penugasan Audit pada Kantor Akuntan Publik. (Suatu Studi Kasus pada Kantor Akuntan Publik Jamaludin, Aria, Sukimto dan Rekan)

136 695 18

Analisis Penyerapan Tenaga Kerja Pada Industri Kerajinan Tangan Di Desa Tutul Kecamatan Balung Kabupaten Jember.

7 76 65

Analisis Pertumbuhan Antar Sektor di Wilayah Kabupaten Magetan dan Sekitarnya Tahun 1996-2005

3 59 17

Analisis tentang saksi sebagai pertimbangan hakim dalam penjatuhan putusan dan tindak pidana pembunuhan berencana (Studi kasus Perkara No. 40/Pid/B/1988/PN.SAMPANG)

8 102 57

Analisis terhadap hapusnya hak usaha akibat terlantarnya lahan untuk ditetapkan menjadi obyek landreform (studi kasus di desa Mojomulyo kecamatan Puger Kabupaten Jember

1 88 63

Diskriminasi Daun Gandarusa (Justicia gendarrusa Burm.f.) Asal Surabaya, Jember dan Mojokerto Menggunakan Metode Elektroforesis

0 61 6