Existence of exponential solutions

Due to our initial assumption on ζ, we have that E € e t ∗ ζ−v ∗ Š = 12, so that one can hope to find solutions to 9 by performing a perturbative analysis. This is precisely what is done in Section 3.1. Then, in Section 3.2, some of the properties of the corresponding solutions of 7 are studied.

3.1 Existence of exponential solutions

Consider the extension of the Laplace transform of ζ when the parameter t ∈ C. Since ζ has bounded support, t 7→ Eexptζ defines a holomorphic map from C to C, and, since Eexpt ∗ ζ ∈ R − , we may extend the definition of Λ to an open neighborhood U of t ∗ in C, by setting Λt := log Eexpt ζ for t ∈ U, using the principal determination of the logarithm. We thus obtain a holomorphic map on U. Proposition 6. Let a be a holomorphic function defined on a neighborhood of zero, such that a0 = − log2 and a ′ 0 = 0. There exists ε 0 and a map φ : [0, ε ] → U such that, for all v ∈ [v ∗ − ε , v ∗ ], the following identity holds: E € e φv ∗ −vζ−v Š = e av ∗ −v , 10 and such that, as ε → 0, φε = t ∗ + i r 2t ∗ ε Λ ′′ t ∗ + Oε. 11 Proof. Given v in the vicinity of v ∗ , we are looking for a t ∈ U such that E € e t ζ−v Š = e av ∗ −v . 12 For t close enough to t ∗ , and v close enough to v ∗ , we can use the logarithm and observe that the equation Λt − t v = av ∗ − v. 13 is sufficient for 12 to hold. Expanding Λ for t ∈ U, we have that Λt = Λt ∗ + t − t ∗ Λ ′ t ∗ + t − t ∗ 2 gt, where g is holomorphic on U and satisfies gt ∗ = Λ ′′ t ∗ 2. Plugging 2 and 3, we can rewrite the above expansion as Λt = − log2 + t v ∗ + t − t ∗ 2 gt. On the other hand, using our assumptions on a, we can write av ∗ − v = − log2 + v ∗ − vbv ∗ − v, where b is an holomorphic function in a neighborhood of zero such that b0 = 0. Finally, 13 reads t − t ∗ 2 gt = v − v ∗ t − bv ∗ − v. 14 403 Observe that, since gt ∗ = Λ ′′ t ∗ 2 ∈ R − , we can define p gt for t close to t ∗ , using the principal determination of the logarithm and the definition p z = explog z 2. We can similarly define p t − bz for t, z close to t ∗ , 0. Now, for t, u ∈ C × C in the vicinity of t ∗ , 0, consider the equation t − t ∗ p gt = u p t − b−u 2 . 15 Clearly, if 15 holds with u = i p v ∗ − v when v ∗ and v are real numbers such that v v ∗ , then 14 holds. Now consider the map Ξ defined in the neighborhood of t ∗ , 0 in C × C by Ξt, u := t − t ∗ p gt − u p t − b−u 2 . Observe that Ξt ∗ , 0 = 0, and that the holomorphic derivative of Ξ with respect to t at t ∗ , 0 is equal to p gt ∗ = p Λ ′′ t ∗ 2 6= 0. Identifying C with R × R, we can thus view Ξ as a smooth map defined on an open set of R 4 , and apply the implicit function theorem to deduce the existence of a smooth map f defined on a neighborhood of 0 in C such that f 0 = t ∗ and such that, for all u near zero, Ξ f u, u = 0. 16 We now set φε = f i p ε, which yields 10. Then, one obtains 11 by computing the derivative of f at zero from 16 in the usual way.

3.2 Properties of the exponential solutions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52