Auxiliary facts related to the stable density Scheme of proofs

Particle systems with quasi-homogeneous initial states and their occupation time fluctuations 197 3 Proofs

3.1 Auxiliary facts related to the stable density

We recall the self-similarity property of p t , p at x = a −1α p t a −1α x, x ∈ R, a 0. 3.1 and the bound p 1 x ≤ C 1 + |x| 1+ α . 3.2 Since p t · is decreasing on R + and symmetric, then by 3.1 we have p t x + y ≤ g t x := ¨ t −1α p 1 0, if |x| ≤ 2 p t x 2 , if |x| 2 , x ∈ R, | y| ≤ 1. 3.3 Denote φ m x = 1 1 + |x| m , m 0. 3.4 For ϕ ∈ S R, |ϕx| ≤ Cϕ, mφ m x. This, and an obvious inequality, 1 1 + |x + y| m ≤ Cm 1 + | y| m 1 + |x| m , m 0, 3.5 imply that for any n ∈ N, t 1 , . . . , t n 0, ϕ 1 , . . . , ϕ n ∈ S R and non-negative, we have T t 1 ϕ 1 T t 2 ϕ 2 . . . T t n ϕ n . . . x + y ≤ CT t 1 φ m T t 2 φ m . . . T t n φ m . . . x, | y| ≤ a, m 0, 3.6 where the constant C depends on m, a, ϕ 1 , . . . , ϕ n .

3.2 Scheme of proofs

As announced in the Introduction, we will give a detailed proof of Theorem 2.2a only, neverthe- less, it seems worthwhile to present a general scheme, based on the central limit theorem, which can be applied to the proofs of all parts of Theorems 2.2 and 2.4 see [7] for details. Let N x denote the empirical process of the system with or without branching started from a single particle at x, and let N j , j ∈ Z, be the empirical process for the particles which at time t = 0 belong to [ j, j + 1, i.e., N j = θ j X n=1 N κ j,n , 3.7 according to the description at the beginning of Section 2 see 2.2. Note that N j , j ∈ Z, are independent. The process X T defined in 1.1 can be written as X T t = X j ∈Z 1 F T Z T t N j s − EN j s ds. 3.8 The first step in the argument is to prove that for any ϕ, ψ ∈ S R, and s, t ≥ 0, lim T →∞ E 〈X T t, ϕ〉〈X T s, ψ〉 = E〈X t, ϕ〉〈X s, ψ〉, 3.9 198 Electronic Communications in Probability where X is the corresponding limit process. Without loss of generality we may assume that ϕ, ψ ≥ 0. Using 3.8 we have E 〈X T t, ϕ〉〈X T s, ψ〉 = X j ∈Z 1 F 2 T Z T t Z Ts E 〈N j r , ϕ〉〈N j r ′ , ψ〉d r ′ d r − X j ∈Z 1 F 2 T Z T t Z Ts E 〈N j r , ϕ〉E〈N j r ′ , ψ〉d r ′ d r. 3.10 Using 3.7, 2.1 and the fact that E 〈N x t , ϕ〉 = T t ϕx in both non-branching and critical branching cases, and defining, for x ∈ R, n ≤ k, random variables h k,n x = ρ [x] k,n − x, 3.11 where [x] is the largest integer ≤ x, we rewrite 3.10 as E 〈X T t, ϕ〉〈X T s, ψ〉 = ∞ X k=0 p k k X n=1 I T ; k, n + ∞ X k=0 p k k X n,m=1 n 6=m II T ; k, n, m − ∞ X k=0 p k k X n=1 ∞ X ℓ=0 p ℓ ℓ X m=1 III T ; k, n; ℓ, m, 3.12 where I T ; k, n = 1 F 2 T Z T t Z Ts X j ∈Z E 〈N ρ j k,n r , ϕ〉〈N ρ j k,n r ′ , ψ〉d r ′ d r = 1 F 2 T Z T t Z Ts Z R E 〈N x+h k,n x r , ϕ〉〈N x+h k,n x r ′ , ψ〉d x d r ′ d r, 3.13 II T ; k, n, m = 1 F 2 T Z T t Z Ts X j ∈Z E T r ϕρ j k,n T r ′ ψρ j k,m d r ′ d r = 1 F 2 T Z T t Z Ts Z R E € T r ϕx + h k,n xT r ′ ψx + h k,m x Š d x d r ′ d r 3.14 in the first equality for II we used independence of systems starting from different points, III T ; k, n; ℓ, m = 1 F 2 T Z T t Z Ts X j ∈Z E T r ϕρ j k,n ET r ′ ψρ j ℓ,m d r ′ d r = 1 F 2 T Z T t Z Ts Z R E T r ϕx + h k,n xET r ′ ψx + h ℓ,m xd x d r ′ d r. 3.15 Note that |h k,n x| ≤ 1, x ∈ R. 3.16 In each case we show convergence of I, II and III, thus proving 3.9. It is shown that I, II, III are bounded, so the passage to the limit in each sum in 3.12 is justified. Particle systems with quasi-homogeneous initial states and their occupation time fluctuations 199 Next, we show that 〈X t, ϕ〉 ⇒ 〈X t, ϕ〉, ϕ ∈ S R, t ≥ 0. To this end, by 3.8 and 3.9 it suffices to prove that the Lyapunov condition lim T →∞ X j ∈Z 1 F 3 T E Z T t 〈N j r , ϕ〉 − E〈N j r , ϕ〉d r 3 = 0 is satisfied, and this property follows if we show that lim T →∞ X j ∈Z 1 F 3 T E Z T t 〈N j r , ϕ〉d r 3 = 0, t ≥ 0, ϕ ∈ S R, ϕ ≥ 0. 3.17 It is clear that convergence in law of linear combinations P m k=1 a k 〈X T t k , ϕ k 〉 can be obtained analogously from 3.9 and 3.17, thus establishing the claimed convergence X T ⇒ f X . In order to give 3.17 a more tractable form we use 2.1, 3.7, and the trivial inequality a 1 + . . . + a k 3 ≤ 3k 2 a 3 1 + . . . + a 3 k , a 1 . . . , a k ≥ 0, obtaining X j ∈Z 1 F 3 T E Z T t 〈N j r , ϕ〉d r 3 = X j ∈Z 1 F 3 T ∞ X k=0 p k E k X n=1 Z T t 〈N ρ j k,n r , ϕ〉d r 3 ≤ 3 1 F 3 T ∞ X k=0 p k k 2 k X n=1 X j ∈Z E Z T t 〈N ρ j k,n r , ϕ〉d r 3 ≤ 3Eθ 3 sup n,k ∈Z+ n ≤k 1 F 3 T Z R E Z T t 〈N x+h k,n x r , ϕ〉d r 3 d x see 3.11. So, to prove 3.17 it suffices to show that lim T →∞ sup n,k ∈Z+ n ≤k 1 F 3 T Z R E Z T t 〈N x+h k,n x r , ϕ〉d r 3 d x = 0, t ≥ 0, ϕ ∈ S R, ϕ ≥ 0. 3.18

3.3 Proof of Theorem 2.2a

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52