A two-time-scale phenomenon getdoc7850. 140KB Jun 04 2011 12:04:32 AM

254 Electronic Communications in Probability process which evolves by fragmentation and coagulation, and is related to the work of Pitman [9] on coalescent random forests. It has its source in an elementary random urn dynamic which we now describe.

1.1 A two-time-scale phenomenon

Consider two urns, say A and B, and assume that at the initial time A contains n balls and B is empty. At each step k = 1, 2, . . ., we flip a fair coin. If head comes up then we pick a ball in A uniformly at random and place it in B provided of course that A is not empty, else we do nothing. Similarly, if tail comes up then we pick a ball in B uniformly at random and place it in A provided of course that B is not empty, else we do nothing. Fix s, t 0 arbitrarily. By the invariance principle, the numbers of balls in B after ⌊tn⌋ steps and after ⌊tn + s p n ⌋ steps are both close to p nR t , where R t is a reflecting Brownian motion evaluated at time t, i.e. has the distribution of the absolute value of an N 0, t-variable. Precisely because B contains about p n balls in that period, each ball in B after ⌊tn⌋ steps has a probability bounded away from 0 and 1 to be selected and placed back in A during the next ⌊s p n ⌋ steps. In other words, even though the number of balls in B remains essentially unchanged between ⌊tn⌋ and ⌊tn + s p n ⌋ steps, the precise contain of urn B evolves significantly. Now imagine a stochastic process governed by the contain of urn B. Suppose that the one- dimension distributions of this process can be renormalized as n → ∞ in such a way that they have a non-degenerate limit, say µ r , when there are approximately r p n balls in B. Let n be large, t 0 fixed and let s vary. The process observed after ⌊tn + s p n ⌋ steps then seems to be in statis- tical equilibrium, in the sense that its one-dimensional distributions do not change much when s increases. More precisely the almost equilibrium law can be expressed as the mixture Z ∞ µ r P R t ∈ dr . However this is only a pseudo-stationarity as this almost equilibrium distribution depends on the parameter t. The rest of this work is devoted to the rigorous analysis of this two-time-scale phenomenon in the special case when the stochastic process alluded above is a fragmentation-coagulation process induced by a natural modification of Pitman’s coalescing random forests [9].

1.2 Fragmentation-coagulation of random forests

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52