Statement of the results

We will also have use for another intermediate event between A and ˜ ˜ A: ¯ A I I ′ j, σ n, N , for which we only impose the landing areas I I ′ of the j arms. We do not ask a priori the sub-intervals to be η-separated either, just to be disjoint. Note however that if they are ηη ′ -separated, then the extremities of the different crossings will be ηη ′ -separated too. To summarize: A j, σ n, N = { j arms ∂ S n ∂ S N , color σ} separated at scale ηη ′ + small extensions hh hh hh h tthh hh hh hh landing areas I I ′ U U U U U U U U U U U U U U U ˜ A ηη ′ j, σ n, N landing areas I I ′ U U U U U U U U U U U U U U ¯ A I I ′ j, σ n, N small extensions if I I ′ are ηη ′ -separated ii ii ii ii ttii ii ii ˜ ˜ A η,Iη ′ ,I ′ j, σ n, N Remark 10. If we take for instance alternating colors ¯ σ = BW BW , and as landing areas ¯I 1 , . . . , ¯I 4 the resp. right, top, left and bottom sides of ∂ S N , the 4-arm event ¯ A . ¯I 4, ¯ σ 0, N the “.” meaning that we do not put any condition on the internal boundary is then the event that 0 is pivotal for the existence of a left-right crossing of S N .

4.3 Statement of the results

Main result Our main separation result is the following: Theorem 11. Fix an integer j ≥ 1, some color sequence σ ∈ ˜ S j and η , η ′ ∈ 0, 1. Then we have ˆ P ˜ ˜ A η,Iη ′ ,I ′ j, σ n, N ≍ ˆP A j, σ n, N 4.8 uniformly in all landing sequences I I ′ of size ηη ′ , with η ≥ η and η ′ ≥ η ′ , p, ˆ P between P p and P 1 −p , n ≤ N ≤ Lp. First relations Before turning to the proof of this theorem, we list some direct consequences of the RSW estimates that will be needed. Proposition 12. Fix j ≥ 1, σ ∈ ˜ S j and η , η ′ ∈ 0, 1. 1. “Extendability”: We have ˆ P ˜ ˜ A η,I ˜ η ′ ,˜I ′ j, σ n, 2N , ˆ P ˜ ˜ A ˜ η,˜Iη ′ ,I ′ j, σ n2, N ≍ ˆP ˜˜ A η,Iη ′ ,I ′ j, σ n, N uniformly in p, ˆ P between P p and P 1 −p , n ≤ N ≤ Lp, and all landing sequences II ′ resp. ˜I˜I ′ of size ηη ′ resp. ˜ η ˜ η ′ larger than η η ′ . In other words: “once well-separated, the arms can easily be extended”. 1577 2. “Quasi-multiplicativity”: We have for some C = C η , η ′ ˆ P A j, σ n 1 , n 3 ≥ C ˆP ˜ ˜ A . η,I η j, σ n 1 , n 2 4ˆ P ˜ ˜ A η ′ ,I η′ . j, σ n 2 , n 3 uniformly in p, ˆ P between P p and P 1 −p , n j ≤ n 1 n 2 n 3 ≤ Lp with n 2 ≥ 4n 1 , and all landing sequences I I ′ of size ηη ′ larger than η η ′ . 3. For any η, η ′ 0, there exists a constant C = Cη, η ′ 0 with the following property: for any p, ˆ P between P p and P 1 −p , n ≤ N ≤ Lp, there exist two landing sequences I and I ′ of size η and η ′ that may depend on all the parameters mentioned such that ˆ P ˜ ˜ A η,Iη ′ ,I ′ j, σ n, N ≥ C ˆP ˜ A η,η ′ j, σ n, N . Proof. The proof relies on gluing arguments based on RSW constructions. However, the events considered are not monotone when σ is non-constant there is at least one black arm and one white arm. We will thus need a slight generalization of the FKG inequality for events “locally monotone”. Lemma 13. Consider A + , ˜ A + two increasing events, and A − , ˜ A − two decreasing events. Assume that there exist three disjoint finite sets of vertices A , A + and A − such that A + , A − , ˜ A + and ˜ A − depend only on the sites in, respectively, A ∪ A + , A ∪ A − , A + and A − . Then we have ˆ P ˜ A + ∩ ˜ A − |A + ∩ A − ≥ ˆP ˜ A + ˆ P ˜ A − 4.9 for any product measure ˆ P . Proof. Conditionally on the configuration ω A in A , the events A + ∩ ˜ A + and A − ∩ ˜ A − are independent, so that ˆ P A + ∩ ˜ A + ∩ A − ∩ ˜ A − |ω A = ˆ P A + ∩ ˜ A + |ω A ˆ P A − ∩ ˜ A − |ω A . The FKG inequality implies that ˆ P A + ∩ ˜ A + |ω A ≥ ˆPA + |ω A ˆ P ˜ A + |ω A = ˆ P A + |ω A ˆ P ˜ A + and similarly with A − and ˜ A − . Hence, ˆ P A + ∩ ˜ A + ∩ A − ∩ ˜ A − |ω A ≥ ˆPA + |ω A ˆ P ˜ A + ˆ P A − |ω A ˆ P ˜ A − = ˆ P A + ∩ A − |ω A ˆ P ˜ A + ˆ P ˜ A − . The conclusion follows by summing over all configurations ω A . Once this lemma at our disposal, items 1. and 2. are straightforward. For item 3., we consider a covering of ∂ S n resp. ∂ S N with at most 8 η −1 resp. 8 η ′−1 intervals {I} of length η resp. I ′ of length η ′ . Then for some I, I ′ , ˆ P ˜ ˜ A η,Iη ′ ,I ′ j, σ n, N ≥ 8η −1 −1 8η ′−1 −1 ˆ P ˜ A η,η ′ j, σ n, N . 1578 We also have the following a-priori bounds for the arm events: Proposition 14. Fix some j ≥ 1, σ ∈ ˜ S j and η , η ′ ∈ 0, 1. Then there exist some exponents α j , α ′ ∞, as well as constants 0 C j , C ′ ∞, such that C j n N α j ≤ ˆP ˜ ˜ A η,Iη ′ ,I ′ j, σ n, N ≤ C ′ n N α ′ 4.10 uniformly in p, ˆ P between P p and P 1 −p , n ≤ N ≤ Lp, and all landing sequences II ′ of size ηη ′ larger than η η ′ . The lower bound comes from iterating item 1. The upper bound can be obtained by using concentric annuli: in each of them, RSW implies that there is a probability bounded away from zero to observe a black circuit, preventing the existence of a white arm consider a white circuit instead if σ = BB . . . B.

4.4 Proof of the main result

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52