i ∈ Z} with values in E, starting in X0 = x, and

272 Electronic Communications in Probability 1 Introduction In this note, we consider one-dimensional Branching Annihilating Random Walks BARW with instant annihilation which are parity preserving. That is, if started in an even number of particles, then the total number of particles will remain even for all time. More specifically, we will make sure that this property holds by the assumption that at each given branching event, the number of newly created particles equals two. In this case, we speak of a double-branching annihilating random walk, short DBARW. Such processes have been investigated frequently in the physics literature, see e.g. [ CT96 ] and [ CT98 ] and [ SV10 ] for a nice overview, where they are considered as examples of elements of the so-called ‘parity-preserving universality class’. They also received some attention in the mathematics literature, see for example [ SS08 ], [ BEM07 ], and [ SV10 ], where the interest often stems from their connection via duality with models from population biology. We begin with introducing the classical symmetric double branching annihilating random walk considered by Sudbury in [ S90 ]. For i, j ∈ Z, we write i ∼ j iff |i − j| = 1. We consider particle configurations x:={x i : i ∈ Z, x i ∈ {0, 1}} in the space E := {0, 1} Z , where 1 indicates the pres- ence, 0 the absence of a particle at site i. We denote the total number of ones in the configuration x by |x| := X i∈Z 1 {x i =1} . Definition 1.1 symmetric DBARW. Let x be a particle configuration in E such that |x| is finite. Let α ∈ [0, 1]. The strong Markov process X={X i

t, i ∈ Z} with values in E, starting in X0 = x, and

dynamics given by the transitions ¨ X i 7→ X i − 1 X j 7→ X j + 1 mod 2 migration at rate α 2 X i 1 {i∼ j} , ¨ X i+1 7→ X i+1 + 1 mod 2 X i−1 7→ X i−1 + 1 mod 2 branching at rate 1 − αX i , is called symmetric Double-Branching Annihilating Random Walk with instant annihilation, branch- ing rate 1 − α and migration rate α. We denote this process by sDBARWα. In [ S90 ], Sudbury shows that, for all α ∈ 0, 1], this process, started in a configuration with an even number of particles, dies out a.s. in finite time. In particular, this model does not exhibit a ‘true’ phase transition in α between extinction und survival regimes. Here, a.s. extinction relies on a beautiful ‘interface duality’ with another interacting particle sys- tem. Indeed, the boundaries between regions of zeroes and ones in a one-dimensional voter model with ‘swapping’ where the types at neighbouring sites are exchanged with each other follow pre- cisely the above symmetric double-branching annihilating random walk with instant annihilation and parameter α, if the voting rate is α2 and the swapping rate for each given neighbouring pair is 1 − α. If we start from an even number of such boundaries, our ‘interface dual’ the swapping voter model starts with a finite number of ones and, since the number of ones is a positive mar- tingale, as observed by Sudbury in [ S90 ], it is not hard to see that it will eventually converge to zero. In other words the symmetric double-branching annihilating random walk with instant annihilation dies out for any α ∈ 0, 1]. A related martingale argument will be an important tool later in this paper. caring DBARW 273 As mentioned earlier, the long-time behaviour of DBARW models turns out to be very sensitive with respect to slight alterations of the branching mechanism. For example, Sturm and Swart introduce in [ SS08 ] the asymmetric double branching annihilating random walk aDBARW: Definition 1.2 asymmetric DBARW. Let x be a particle configuration in E such that |x| is finite. Let α ∈ [0, 1]. The strong Markov process X={X i

t, i ∈ Z} with values in E, starting in X0 = x,

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52