x := T x + T x and T The subdiffusive case

with W 1 · is a complex Gaussian white noise on R n . 2 If m 1 κ 1 m 2 κ 2 and d 1 d 2 , then the finite-dimensional distributions of the rescaled random field [ǫ m2κ2 α L m 2 ǫ − 1 α ] − 1 2 e −d 1 t ǫ n w t ǫ , x ǫ 1 α ; w · − Q t ǫ ; d 1 , d 2 ‚ C 1 C 2 Œ o , t 0, x ∈ R n , converge weakly, as ǫ → 0, to the finite-dimensional distributions of the random field T 2 m 2 t, x := ‚ −p 11 p 12 X 2 m 2 t, x −p 21 p 12 X 2 m 2 t, x Œ , t 0, x ∈ R n , where X 2 m 2 t, x := C 2 m 2 p m 2 Kn, κ 2 m2 2 Z ′ R n ×m2 e i x,z 1 +...+z m2 −µt|z 1 +...+z m2 | α |z 1 | · · · |z m 2 | n −κ2 2 m 2 Y l=1 W 2 dz l , 28 and W 2 · is a complex Gaussian white noise on R n . 3 If m 1 = m 2 := m, κ 1 = κ 2 := κ, and d 1 d 2 , then the finite-dimensional distributions of the rescaled random field [ǫ m κ α L m ǫ − 1 α ] − 1 2 e −d 1 t ǫ n w t ǫ , x ǫ 1 α ; w · − Q t ǫ ; d 1 , d 2 ‚ C 1 C 2 Œ o , t 0, x ∈ R n , converge weakly, as ǫ → 0, to the finite-dimensional distributions of the random field T 3 m

t, x := T

1 m t, x + T 2 m t, x, 29 where T 1 m

t, x and T

2 m t, x, are defined in the case 1 and the case 2 with m 1 = m 2 = m and κ 1 = κ 2 = κ.

4.2 The subdiffusive case

We extend the above results to the subdiffusive case, meant for which the time-fractional derivative is ∂ β ∂ t β , β ∈ 0, 1, see Section 1 in the system 2, that is, ∂ β ∂ t β ‚ u v Œ = −µI − ∆ γ 2 −∆ α 2 ‚ u v Œ + B ‚ u v Œ , µ, α, γ 0, 30 The time-fractional derivative ∂ β ∂ t β , for any β 0, can be seen, for example, the book of Djrbashian [8]. For 0 β 1, it is d β f d t β t = 1 Γ1 − β Z t f ′ τ t − τ β d τ, 31 where f t is causal i.e., f vanishes for t 0. 971 The solution of 30 can be obtained via the fractional both in time and in space procedure see, for example, [20, 21]; under the Condition DM, we express the solution as the convolution of the fractional both in time and in space Green function and the initial data, as follows. wt, x; w · = Z R n P ‚ G β t, x − y; d 1 G β t, x − y; d 2 Œ P −1 ‚ u y v y Œ d y 32 with the fractional Green function G β t, x; d j is defined via the transformation E β −µ|λ| α 1 + |λ| 2 γ 2 t β + d j t β = Z R n e i x,λ G β t, x; d j d x, j ∈ {1, 2}, where E β · is the Mittag-Leffler function defined by see, for example, [2] or [8, Chapter 1] E β z = ∞ X p=0 z p Γβ p + 1 , z ∈ C. 33 For the properties of the Mittag-Leffler function, we refer the classic book by Erdélyi et.al. [10] pp. 206-212, in particular p. 206 7 and p. 210 21. The following results are time-fractional versions of those in the above; however, the sub-diffusivity brings some new feature. For the large-scalings of homogenization of the system, we need to take an additional scaling on the matrix B in the system 30 in order to compromise the effect of this sub-diffusivity upon the interaction between u and v; while the sub-diffusivity has no influence on the small-scalings and thus it is the same as that in Section 3. To make the situation clear, in the following we denote the vector solution by wt, x; w ·, B. We only state some partial assertions in the below. Proposition 4. Let {wt, x; w ·, B, t 0, x ∈ R n } be the solution-vector of the initial value prob- lem 30 and 3, satisfying Conditions DM, SGRID, and LD. Denote again the long-range-dependence indices κ j and the Hermite ranks m j , j ∈ {1, 2}. Assume that m 1 κ 1 m 2 κ 2 . Large-scalings: under m 1 κ 1 , m 2 κ 2 min{2α, n} the finite-dimensional distributions of the rescaled random field T 1 ǫ t, x := ǫ m1κ1 α L m 1 ǫ − β α − 1 2 n w ǫ −1 t, ǫ − β α x; w ·, ǫ β B − Cǫ −1 t; ǫ β B o , t 0, x ∈ R n , converge weakly, as ǫ → 0, to the finite-dimensional distributions of the random field T 1 t, x = ‚ p 11 p 22 T 1 t, x; d 1 − p 12 p 21 T 1 t, x; d 2 p 21 p 22 T 1 t, x; d 1 − p 21 p 22 T 1 t, x; d 2 Œ , t 0, x ∈ R n , where C ǫ −1 t; ǫ β B = Ct; B = P ‚ E β d 1 t β E β d 2 t ⠌ P −1 ‚ C 1 C 2 Œ , and for j ∈ {1, 2} T 1 t, x; d j is expressed by the following multiple-Wiener integral: C 1 m 1 p m 1 Kn, κ 1 m1 2 Z ′ R n ×m1 e i x,λ 1 +···+λ m1 E β −µ|λ 1 + · · · + λ m 1 | α t β + d j t β |λ 1 | · · · |λ m 1 | n −κ1 2 m 1 Y l=1 W 1 dλ l . 34 972 Small-scalings: under m 1 κ 1 , m 2 κ 2 min{2α + γ, n} the finite-dimensional distributions of the rescaled random field M 1 ǫ := [ ǫ m 1 κ 1 χ L m 1 ǫ −χ ] − 1 2 n w ǫt, ǫ β α+γ x; w ǫ − β α+γ −χ ·, B − ‚ C 1 C 2 Œ o , t 0, x ∈ R n , converge weakly, as ǫ → 0, to the finite-dimensional distributions of the random field M 1 t, x = ‚ M 1 t, x Œ , t 0, x ∈ R n , where M 1 = C 1 m 1 p m 1 Kn, κ 1 m1 2 Z ′ R n ×m1 e i x,λ 1 +···+λ m1 E β −µ|λ 1 + · · · + λ m 1 | α+γ t β |λ 1 | · · · |λ m 1 | n −κ1 2 m 1 Y l=1 W 1 dλ l .

4.3 Two remarks for future study

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52