Proof of Proposition 2 getdocf666. 212KB Jun 04 2011 12:05:13 AM

Reflected Brownian motion in a wedge 7 row as e 〈µ,x〉 π µ j x = e kxk〈µ,Rot j w θ 〉 − 〈µ, I − Ref j v 1 〉 e kxk〈µ,Rot j w θ 〉 − e kxk〈µ,Ref j w θ 〉 〈µ, Rot j − Ref j v 1 〉 11 = I kxk + 2 ∞ X n=1 T n cosω 2 j − θ I n kxk − 2 〈µ, I − Ref j v 1 〉 〈µ, Rot j − Ref j v 1 〉 ∞ X n=1 ” T n cosω 2 j − θ − T n cosω 2 j + θ — I n kxk = I kxk + 2 ∞ X n=1 T n cosω 2 j − θ I n kxk − 2〈µ, I − Ref j v 1 〉 ∞ X n=1 sinn θ U n−1 cosω 2 j I n kxk, where we again set ω k = θ µ − 2δ − kξ, and T n and U n are the Chebyshev polynomials of the first and second kind, respectively. In conjunction with some trigonometry, the above reasoning shows that e 〈µ,x〉 π µ j x = I kxk + 2 sin δ ∞ X n=1 h j,n θ I n kxk, where h j,n θ is defined as 1 2 sinn θ + δU n cosω 2 j − 〈µ, v 1 kv 1 k〉 sinnθ U n−1 cosω 2 j + 1 2 sinn θ − δU n−2 cosω 2 j . We use the convention U −1 x = 0. Therefore, e 〈µ,x〉 π µ x can be expanded in terms of modified Bessel functions of the first kind, and for n ≥ 1 the coefficient in front of I n kxk is proportional to ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ h 0,n θ h 1,n θ h 2,n θ · · · h ℓ,n θ U ℓ−1 cosω U ℓ−1 cosω 2 U ℓ−1 cosω 4 · · · U ℓ−1 cosω 2 ℓ .. . .. . .. . U cosω U cosω 2 U cosω 4 · · · U cosω 2 ℓ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ . 12 To see how this follows from 7, note that we may apply elementary determinantal operations to replace a row with elements cos ω 2 j m by U m cosω 2 j . The term I kxk is not present in the expansion in view of the last row in 12 with ones. The condition θ µ ∈ Θ ℓ guarantees that none of the cos ω 2 j are equal, and we conclude that the coefficient of I n kxk vanishes for n ℓ and that it is proportional to sinℓθ + δ for n = ℓ. Since I ℓ r ∼ C r ℓ for some constant C 6= 0 as r → 0, this yields π µ r w θ ∼ C µ r ℓ sin ℓθ + δ.

4.3 Proof of Proposition 2

We rely on the following auxiliary lemma, whose proof is inspired by elementary symmetric- function theory. Alternatively, as communicated to us by Sean Meyn, Proposition 2 can be proved using a continuous-space analogue of Theorem 1 of Foster [12]; this can be derived using the general theory of Markov processes. 8 Electronic Communications in Probability Lemma 2. Let ℓ ∈ {1, 2, . . .} and ζ ∈ R ℓ+1 . For any y 0, the sign of the determinant ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ e ζ y e ζ 1 y · · · e ζ ℓ y ζ ℓ−1 ζ ℓ−1 1 · · · ζ ℓ−1 ℓ .. . .. . .. . ζ ζ 1 · · · ζ ℓ 1 1 · · · 1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ equals the sign of Q 0≤i j≤ℓ [ζ i − ζ j ]. Proof. The statement is a continuous analogue of the claim that s n,0,...,0 ζ is nonnegative for ζ ≥ 0, where s λ is a symmetric polynomial known as a Schur polynomial or, in this special case, a complete homogeneous symmetric polynomial. By induction on ℓ one can show that the given determinant equals Y 0≤i j≤ℓ [ζ i − ζ j ] Z 0=z −1 ≤z ≤...≤z ℓ−1 ≤z ℓ = y e ζ z −z −1 · · · e ζ ℓ z ℓ −z ℓ−1 dz · · · dz ℓ−1 , and the claim follows. ƒ We now prove Proposition 2. By the Maximum Principle see Theorem 2.5 of [21] for a suitable form, neither the minimum nor the maximum of π µ over S is attained in the open set S o . We therefore investigate the boundary. We first prove that π µ x → 0 as kxk → ∞ by showing that, for any x ∈ S, 〈µ, I − Rot k x〉 0, k = 0, . . . , ℓ, 〈µ, I − Ref k x〉 0, k = 1, . . . , ℓ. Set θ = arg x. For the claim involving Rot k , we observe that 〈µ, I − Rot k x〉 = −2kxk sinδ + kξ sinθ µ − θ − δ − kξ. Since 0 δ+kξ ≤ δ+ℓξ = π−ε π and we have θ ξ and the stability condition ξ−ε θ µ δ, we obtain − π θ µ − θ − δ − kξ 0. The same argument works for the claim involving Ref k , now relying on 〈µ, I − Ref k x〉 = −2kxk sinδ + kξ − θ sinθ µ − δ − kξ and the assumption k ≥ 1. We next prove that the signs of π µ r w and π µ r w ξ are equal and independent of r 0. The equality of the signs follows from Proposition 1 after showing that they do not depend on r. From Lemma 2 with ζ j = 〈µ, Rot j e 1 〉 and 11 we conclude this for π µ r w . Applying the same argument ‘clockwise’ shows that this also holds for π µ r w ξ . 5 The BAR and a PDE with boundary conditions This section prepares for the proof of Theorem 1 by relating the stationary density to a partial differential equation PDE with boundary conditions involving the pushing directions. Reflected Brownian motion in a wedge 9

5.1 The BAR

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52