Pengendalian Korosi melalui Perancangan Pengendalian Korosi Melalui Pengubahan Lingkungan

Gambar 2.6. Korosi Tegangan Kopeliovich, 2012

2.4 Prinsip Dasar Pengendalian Korosi

Korosi telah didefinisikan sebagai penurunan mutu logam oleh reaksi elektrokimia dengan lingkungannya. Pada kebanyakan situasi praktis serangan ini tidak dapat dicegah, kita hanya dapat berupaya mengendalikannya sehingga struktur atau komponen mempunyai masa pakai yang lebih panjang. Adapun pengendalian korosi bisa dilakukan dengan berbagai cara, diantaranya yang paling penting adalah: a. Modifikasi rancangan b. Modifikasi lingkungan c. Pemberian lapisan pelindung d. Pemilihan bahan e. Proteksi katodik dan anodik

2.4.1 Pengendalian Korosi melalui Perancangan

Komponen-komponen akan menghadapi berbagai macam lingkungan baik selama tahapan-tahapan pembuatan, pemindahan dan penyimpanan, maupun ketika kelak harus menjalankan tugas sehari-hari. Laju korosi atau perusakan lapisan pelindung yang diberikan kepada logam akan dipengaruhi oleh perubahan-perubahan faktor diantaranya kelembaban relatif, temperatur, pH, konsentrasi oksigen, bahan pengotor padat atau terlarut, konsentrasi, dan kecepatan elektrolit. Variasi-variasi kondisi lingkungan ini sedapat mungkin harus sudah diidentifikasi sejak tahapan perancangan Trethewey, 1991

2.4.2 Pengendalian Korosi Melalui Pengubahan Lingkungan

Menurut Haryono, 2010, terdapat beberapa faktor lingkungan yang dapat mempengaruhi proses korosi antara lain, yaitu: 1. Suhu Kenaikan suhu akan menyebabkan bertambahnya kecepatan reaksi korosi. Hal ini terjadi karena semakin tingginya energi kinetik dari partikel-partikel yang bereaksi sehingga melampaui besarnya harga energi aktivasi dan akibatnya laju korosi juga akan semakin cepat, begitu juga sebaliknya. 2. Kecepatan alir fluida atau kecepatan pengadukan Laju korosi cenderung bertambah jika laju atau kecepatan aliran fluida bertambah besar. Hal ini karena kontak antara zat perekasi dan logam akan makin banyak yang lepas sehingga logam akan mengalami kerapuhan korosi. 3. Konsentrasi bahan korosif Hal ini berhubungan dengan pH atau keasaman dan kebasaan suatu larutan. Larutan yang bersifat asam sangat korosif terhadap logam dimana logam yang berada di dalam media larutan asam akan lebih cepat terkorosi karena merupakan reaksi anoda. Sedangkan larutan yang bersifat basa dapat menyebabkan korosi pada katodanya karena reaksi katoda selalu serentak dengan reaksi anoda. 4. Oksigen Adanya oksigen yang terdapat di dalam udara dapat bersentuhan dengan permukaan logam yang lembab. Sehingga kemungkinan menjadi korosi lebih besar. Di dalam air lingkungan terbuka, adanya oksigen menyebabkan korosi cepat terjadi. 5. Waktu kontak Aksi inhibitor diharapkan dapat membuat ketahanan logam terhadap korosi lebih besar. Dengan adanya penambahan inhibitor ke dalam larutan, maka akan menyebabkan laju reaksi menjadi lebih rendah, sehingga waktu kerja inhibitor untuk melindungi logam dari korosi akan hilang atau habis pada waktu tertentu. Hal itu dikarenakan semakin lama waktunya maka inhibitor akan semakin habis terserang oleh larutan. Baik proses korosi di udara maupun proses korosi basah dapat dikendalikan menggunakan bahan kimia khusus yang disebut inhibitor. Apabila bahan ini ditambahkan ke dalam lingkungan, laju serangan korosi akan berkurang Trethewey, 1991. Korosi dapat dikurangi dengan berbagai macam cara, dan cara yang paling mudah dan paling murah adalah dengan menambahkan inhibitor ke dalam media. Inhibitor berasal dari kata inhibisi: menghambat, jadi inhibitor ditambahkan untuk menghambat reaksi antarmuka antara material dengan lingkungan. Inhibitor terdiri dari dua jenis yaitu inhibitor organik dan anorganik. Inhibitor dapat dianggap sebagai katalisator yang memperlambat retarding catalyst Haryono, 2010. Rina, 2012 menyebutkan bahwa inhibitor akan mereduksi kecepatan korosi dengan cara: 1. Adsorpsi ionmolekul inhibitor ke permukaan logam 2. Meningkatkan atau menurunkan reaksi anoda dan atau katoda 3. Menurunkan kecepatan difusi reaktan ke permukaan logam 4. Menurunkan hambatan listrik dari permukaan logam 5. Inhibitor mudah membentuk lapisan in situ pada permukaan logam Inhibitor organik umumnya bersifat heteroatom. Atom O, N, dan S ditemukan dalam kepadatan tinggi dan atom-atom tersebut bertindak sebagai inhibitor korosi. Atom O, N, dan S merupakan pusat aktif untuk proses adsorpsi pada permukaan logam. Efisiensi inhibisi dari logam ini adalah ONSP. Penggunaan senyawa organik yang mengandung oksigen, sulfur, dan khususnya nitrogen sangat baik untuk mereduksi serangan korosi pada baja. Beberapa faktor yang mempengaruhi kerja inhibitor adalah panjang rantai, berat molekul, ikatan aromatis atau konjugasi, kemungkinan ikat silang, serta kelarutannya dalam lingkungan yang digunakan. Inhibitor bahan alam green inhibitor bersifat biodegradable mudah terurai dan tidak mengandung logam berat atau senyawa racun lainnya. Beberapa penelitian telah melaporkan keberhasilan penggunaan senyawa bahan alam untuk menghambat korosi dari logam dalam lingkungan asam dan basa. Green inhibitor yang cocok untuk baja karbon adalah inhibitor yang mengandung asam amino alami seperti alanin, glisin dan leusin Rina, 2012. Inhibitor organik bekerja dengan membentuk senyawa kompleks yang mengendap pada permukaan logam sebagai lapisan pelindung yang bersifat hidrofobik yang dapat menghambat reaksi logam dengan lingkungannya. Reaksi yang terjadi dapat berupa reaksi katodik, anodik, atau keduanya. Hal ini bergantung dari reaksi pada permukaan logam dan potensial logam tersebut. Selain itu juga dapat berfungsi untuk menetralisir konstituen korosif dan mengabsorbsi konstituen korosif tersebut. Penggunaan dengan konsentrasi yang tepat dapat mengoptimalkan perlindungan pada seluruh logam. Inhibitor organik akan teradsorbsi pada permukaan tergantung dari muatan inhibitor dan muatan logam untuk membentuk ikatan dari senyawa kompleks tersebut sebagi contoh kation inhibitor seperti amin atau anion inhibitor seperti sulfonat akan teradsorbsi tergantung muatan logam tersebut apakah negatif atau positif. Efektifitas dari inhibitor organik dipengaruhi oleh komposisi kimia, struktur molekul, dan gugus fungsi, ukuran dan berat molekul, serta afinitas inhibitor terhadap logamnya. Mekanisme proteksi ekstrak bahan alam terhadap besibaja dari serangan korosi diperkirakan hampir sama dengan mekanisme proteksi oleh inhibitor organik. Reaksi yang terjadi antara logam Fe 2+ degan medium korosif yang mengandung ion-ion klorida seperti NaCl, MgCl 2 , KCl akan bereaksi dengan Fe dan diperkirakan menghasilkan FeCl 2 . Jika ion klorida yang bereaksi semakin besar, maka FeCl 2 yang terbentuk juga akan semakin besar, seperti tertulis dalam reaksi berikut: NaCl Na + + Cl - 2.4 MgCl 2 Mg 2+ + 2Cl - 2.5 KCl K + + Cl - 2.6 Ion klorida pada reaksi diatas akan menyerang logam besi Fe sehingga besi akan terkorosi menjadi: 2Cl - + Fe 2+ FeCl 2 2.7 Dan reaksi antara Fe 2+ dengan inhibitor ekstrak bahan alam menghasilkan senyawa kompleks. Inhibitor ekstrak bahan alam yang mengandung nitrogen mendonorkan sepasang elektronnya pada permukaan logam mild steel ketika ion Fe 2+ terdifusi ke dalam larutan elektrolit, reaksinya adalah: Fe Fe 2+ + 2e - melepaskan elektron 2.8 Fe 2+ + 2e - Fe menerima elektron 2.9 Mekanisme inhibisi ekstrak bahan alam ditunjukkan pada Gambar 2.7 berikut: Gambar 2.7. Mekanisme Inhibisi Ekstrak Bahan Alam Ilim, 2008 Produk yang terbentuk diatas mempunyai kestabilan yang tinggi dibanding dengan Fe saja, sehingga sampel besibaja yang diberikan inhibitor ekstrak bahan alam akan lebih tahan terproteksi terhadap korosi Haryono, 2010. Inhibitor akan membentuk lapisan pelindung in situ karena reaksi antara larutan dengan permukaan logam. Proses penginhibisiannya disebabkan adanya adsorpsi molekul pada permukaan logam. Inhibitor teradsorpsi pada permukaan logam membentuk lapisan pasif yang hidrofobik yang melindungi logam terhadap korosi lebih lanjut. Adsorpsi inhibitor ke permukaan logam disebabkan oleh gaya tarik elektrostatik antara muatan ion dengan muatan listrik antarmuka logam. Secara keseluruhan, senyawa inhibitor adalah netral. Tetapi, gugus nitrogen pada senyawa tersebut memiliki pasangan elektron bebas yang menyebabkan inhibitor cenderung bermuatan negatif sehingga inhibitor akan tertarik ke permukaan logam dan membentuk lapisan Purwanto, 2013.

2.4.3 Pengendalian Korosi dengan Lapisan Pelindung

Dokumen yang terkait

Pengaruh Pemberian Tepung Daun Lamtoro (Leucaena leucocephald) Dalam Ransum Terhadap Performans Ayam Broiler Umur 0-6 Minggu 0

0 26 68

Pengaruh Beberapa Perlakuan Pemberian Tepung Daun Lamtoro (Leucaena leucocephala) Dalam Ransum Terhadap Karkas Ayam Broiler Umur 6 Minggu

0 39 61

POTENSI EKSTRAK DAUN LAMTORO (Leucaena leucocephala Lamk) SEBAGAI BIOPRESERVATIF POTENSI EKSTRAK DAUN LAMTORO (Leucaena leucocephala Lamk) SEBAGAI BIOPRESERVATIF TELUR AYAM.

0 3 15

PENGARUH KONSENTRASI INHIBITOR EKSTRAK DAUN TEH (Camelia Sinensis) TERHADAP LAJU KOROSI BAJA KARBON SCHEDULE 40 GRADE B ERW.

4 5 12

Pengaruh Waktu Terhadap Laju Korosi Logam Fe dan Cr Pada Baja SS 316 Dalam Medium HCl 3M Dengan Inhibitor Ekstrak Metanol Daun Kopi

0 0 6

MANFAAT DAUN LAMTORO Leucaena leucocepha

0 2 6

BAB 2 TINJAUAN PUSTAKA 2.1 Karat dan Akibatnya - Pengaruh Konsentrasi Inhibitor Ekstrak Metanol Daun Lamtoro (Leucaena Leucocephala L) Terhadap Laju Korosi Baja Karbon Schedule 40 Grade B Serta Jumlah Fe Dan C Yang Terkorosi Dalam Natrium Klorida 3 %

0 0 19

BAB 1 PENDAHULUAN 1.1 Latar Belakang - Pengaruh Konsentrasi Inhibitor Ekstrak Metanol Daun Lamtoro (Leucaena Leucocephala L) Terhadap Laju Korosi Baja Karbon Schedule 40 Grade B Serta Jumlah Fe Dan C Yang Terkorosi Dalam Natrium Klorida 3 %

0 1 7

Pengaruh Konsentrasi Inhibitor Ekstrak Metanol Daun Lamtoro (Leucaena Leucocephala L) Terhadap Laju Korosi Baja Karbon Schedule 40 Grade B Serta Jumlah Fe Dan C Yang Terkorosi Dalam Natrium Klorida 3 %

0 0 13

PEMANFAATAN DAUN LAMTORO (LEUCAENA LEUCOCEPHALA) SEBAGAI GREEN INHIBITOR KOROSI PADA LOGAM BESI DALAM MEDIUM NaCl 3

0 0 14