Distributional properties of the components P corresponding to the limit of a connected component P = K | |P | = k ∝

where C ∼ Gamma2t, 1 see, e.g., [24, 35]. So, we can take R j = p E j , 1 ≤ j ≤ n, where E 1 , E 2 , . . . , E n are independent and identically distributed Exp 1 2 and take X 1 , X 2 , . . . , X n = 1 P n j=1 G j G 1 , G 2 , . . . , G n , where G 1 , G 2 , . . . , G n are independent and identically distributed Gamma 1 2 , 1 2 random variables, independent of E 1 , E 2 , . . . , E n . Note that P n j=1 G j is then also independent of X 1 , . . . , X n and has Gamma n 2 , 1 2 distribution. It follows that R 1 p X 1 , R 2 p X 2 , . . . , R n p X n = 1 ÆP n j=1 G j p E 1 G 1 , . . . , p E n G n . Now by 4, p E 1 G 1 , . . . , p E n G n are independent and distributed as exponential random variables with parameter 1. So Y 1 , . . . , Y n := 1 P n j=1 p E j G j p E 1 G 1 , . . . , p E n G n ∼ Dirichlet1, 1, . . . , 1, and Y 1 , . . . , Y n is independent of P n j=1 p E j G j which has Gamman, 1 distribution. Hence, n X j=1 p E j G j × 1 P n j=1 p E j G j p E 1 G 1 , . . . , p E n G n = ÆP n j=1 G j × 1 ÆP n j=1 G j p E 1 G 1 , . . . , p E n G n , where the products × on each side of the equality involve independent random variables. Applying a Gamma cancellation Lemma 8 of Pitman [31], we conclude that R 1 p X 1 , R 2 p X 2 , . . . , R n p X n d = p Γ × Y 1 , Y 2 , . . . , Y n , where Γ is independent of Y 1 , . . . , Y n and has a Gamma n+1 2 , 1 2 distribution.

3.2 Distributional properties of the components

Procedure 1 is essentially a consequence of Theorems 6 and 8, below, which capture many of the key properties of the metric space g2˜

e, P corresponding to the limit of a connected component

of Gn, p conditioned to have size of order n 2 3 , where p ∼ 1n. They provide us with a way to sample limit components using only standard objects such as Dirichlet vectors and Brownian CRT’s. Theorem 6 Complex components. Conditional on |P | = k ≥ 2, the following statements hold. a The kernel K2˜ e, P is almost surely 3-regular and so has 2k − 1 vertices and 3k − 1 edges. For any 3-regular K with t loops, P K2˜ e, P = K | |P | = k ∝ ‚ 2 t Y e ∈EK multe Œ −1 . 5 756 b For every vertex v of the kernel K2˜ e, P , we have µv = 0 almost surely. c The vector µe of masses of the edges e of K2˜ e, P has a Dirichlet 1 2 , . . . , 1 2 distribution. d Given the masses µe of the edges e of K2˜ e, P , the metric spaces induced by g2˜e, P on the edge trees are CRT’s encoded by independent Brownian excursions of lengths µe. e For each edge e of the kernel K2˜ e, P , the two distinguished points in κ −1 e are independent uniform vertices of the CRT induced by κ −1 e. As mentioned earlier, a is an easy consequence of [25, Theorem 7 and 1.1] and [29, Theorem 4] see also [26, Theorems 5.15 and 5.21]. Also, it should not surprise the reader that the vertex trees are almost surely empty: in the finite-n case, attaching them to the kernel requires only one uniform choice of a vertex which in the limit becomes a leaf whereas the edge trees require two such choices. The choice of two distinguished vertices has the effect of “doubly size-biasing” the edge trees, making them substantially larger than the singly size-biased vertex trees. It turns out that similar results to those in c-e hold at every step of the stick-breaking construction and that, roughly speaking, we can view the stick-breaking construction as decoupling into indepen- dent stick-breaking constructions of rescaled Brownian CRT’s along each edge, conditional on the final masses. This fact is intimately linked to the “continuous Pólya’s urn” perspective mentioned earlier, and also seems related to an extension of the gamma duplication formula due to Pitman [31]. However, to make all of this precise requires a fair amount of terminology, so we postpone further discussion until later in the paper. We note the following corollary about the lengths of the paths in the core of the limit metric space. Corollary 7. Let K be a 3-regular graph with edge-set EK = {e 1 , e 2 , . . . , e m } with arbitrary labeling. Then, conditional on K2˜

e, P = K, the following statements hold.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52