Applications Let us consider S Let PR Let f : M

20 Corollary 2.5 Let M m be a simply-connected compact manifold without boundary and m ≥ 6. If the homology groups H k M;Z, k = m , are without torsion then M has Z p -perfect Morse functions for any prime number p ≥ 2. Proof. Under the above hypotheses the Morse-Smale characteristic is given by βM;Z + 2 ∑ − = + 1 m k m b k b see [3, Theorem 2.3]. Because H k M;Z is without torsion , k = m , , one obtains bk = 0, k = m , , thus the condition 2.8 is satisfied for any prime number p ≥ 2. Theorem 2.6 Let M m be a simply-connected compact manifold without boundary with m ≥ 6. Then M has Q-perfect Morse functions if and only if the groups H k M;Z, k = m , , have no torsion. Proof. Taking into account the above mentioned result see [3, Theorem 2.3] and Lemma 2.2 it follows that γM = βM;Q + 2 ∑ − = + 1 m k m b k b . Using Theorem 2.1 one obtains that M has Q-perfect Morse functions if and only if 2 ∑ − = + 1 m k m b k b = 0, i.e. if and only if bk = 0, k = m , . Remark. The results in Corollary 2.5 and Theorem 2.6 can be extended if we replace the condition that the manifold M is simply-connected with that π 1 M = Z ⊕…⊕Z s times, where s ≥ 0 is an arbitrary integer and π 1 M represents the fundamental group of M. In this case we use the result given in V. V. Sharko [19] and the explicit formula for the Morse-Smale characteristic obtained in [3, Theorem 3.1ii].

3. Applications

1. Let us consider S

m = {λ∈R m+1 : λ =1}, m ≥ 1, the m- dimensional sphere in the Euclidian space R m+1 . It is well-known that γS m = 2. On the other hand the integer homology of S m is given by H k S m ;Z = { }    = = otherwise m k or k if Z 3.1 thus β S m ;Z = β m S m ;Z = 1 and β k S m ;Z = 0 for 1 ≤ k ≤ m-1. 21 Taking into account Theorem 2.1 and Theorem 2.3 the following result holds. Theorem 3.1 i S m has Q-perfect Morse functions. ii For any prime number p ≥ 2, S m has Z p -perfect Morse functions.

2. Let PR

m be the real projective m-dimensional space. It is well- known that PR m is a compact differentiable smooth manifold, without boundary, and the integer homology of PR m is H k PR m ;Z = { }       = = otherwise m k odd is k if Z m k odd is k if Z k if Z , , 2 p p If m is even from 3.2 one obtains β PR m ;Z = 1 and β k PR m ;Z = 0 for k ≥ 1. In this case it is easy to see that d1,2 = d3,2 = … = dm-1,2 = 1 and dk,2 = 0, otherwise. If m is odd from 3.2 it follows that β PR m ;Z = β m PR m ;Z = 1 and β k PR m ;Z = 0 for 1 ≤ k ≤ m-1. It is not difficult to note that d1,2 = d3,2 = … = dm,2 = 1 and dk,2 = 0, otherwise. For a prime number p ≥ 3 one obtains dk,p = 0, k = m , . It is known see the paper of N. H. Kuiper [14] that the Morse-Smale characteristic of PR m is γPR m = m+1. Using the above numbers dk,2, dk,p for p ≥ 3, and Theorem 2.1, Theorem 2.3 we derive the following result. Theorem 3.2 i PR m has not Q-perfect Morse functions. ii PR m has Z 2 -perfect Morse functions. iii For any prime number p ≥ 3, PR m has not Z p -perfect Morse functions. Notice that a Z 2 -perfect Morse function is given in the paper of N. H. Kuiper [14].

3. Let f : M

m →R m+k be a smooth mapping and let f v : M →R be the real mapping defined by f v x = fx, v, i.e. the height function with respect to the vector v ∈ S m+k-1 . 22 Consider the set H f = {f v : v ∈ S m+k-1 } 3.3 The mapping f : M →R m+k is nondegenerated if f v is a Morse function, for almost all vectors v ∈S m+k-1 . It is known that any immersion f : M →R m+k is nondegenerated. If f : M →R m+k is an immersion, then consider the m+k-dimensional manifold N f = {x,v∈M×R m+k : x ∈Cf v } and the vector bundle of rank k N f →  π M, where the projection π is defined by πx,v = x. Consider the m+k-1-dimensional manifold N f,1 = {x,v∈M×S m+k-1 : x ∈Cf v } and the Gauss mapping N : N f,1 → S m+k-1 , where N x,v = v. Because the immersion f is nondegenerated it follows that we can define the functions µ j f, µf : S m+k-1 →Z, j = 0, 1, …, m, where µ j fv =    Ω ∈ otherwise M f if f v v j µ and µfv =    Ω ∈ otherwise M f if f v v µ . Because f is a nondegenerated mapping it follows that the functions µ j f, µf, j = 0, 1, …, m, are integrable densities on S m+k-1 . Denote by v m+k-1 the volume of S m+k-1 and by σ m+k-1 the canonical Riemannian structure on S m+k- 1 . The number τ j f = ∫ − + − + − + 1 1 1 1 k m S k m j k m d f v σ µ 3.4 is called the curvature of index j of immersion f : M → R m+k , where j is a fixed integer with 0 ≤ j ≤ m. The number τf = ∑ = m j j f τ represents the absolute total curvature of f. It is easy to see that the following relation is true 23 τf = ∫ − + − + − + 1 1 1 1 k m S k m k m d f v σ µ 3.5 Theorem 3.3 the curvature inequalities The following inequalities hold: τ j f ≥ γ j M ≥ β j M;F, j = 0, 1, …, m τf ≥ γM ≥ ∑ = m j j M γ ≥ ∑ = m j j F M ; β where F is any field. Note that if the immersion f has the property that for almost all v ∈S m+k- 1 the Morse function f v is F-perfect, then we have equalities in the above relations. Theorem 3.4 Gauss-Bonnet type formula The following relation holds: ∑ = = − m j j j M f 1 χ τ 3.6 where χM is the Euler-Poincaré characteristic of M. Proof. Taking into account the Euler formula ∑ = = − m j j j M f 1 χ µ , it follows that 1 1 1 1 1 1 1 1 1 1 M d M v d f v f k m k m S k m k m m j S k m m j j j k m j j χ σ χ σ µ τ = = =     − = − ∫ ∑ ∫ ∑ − + − + − + − + = − + = − + and we are done. Consider j a fixed integer with 0 ≤ j ≤ m. The Morse function g ∈ ΩM is j-tight if µ i g = γ i M for all i ≤ j. The Morse function g ∈ ΩM is tight if µg = γM. The immersion f : M →R m+k is j-tight tight if any height function f v ∈ H v ∩ ΩM is j-tight tight. If f : M →R m+k is a tight immersion, then for any immersion f : M →R m+k the following inequality holds: 24 τf ≥ τf 3.7 Indeed, for v ∈ S m+k-1 with f v , f 0v ∈ ΩM one obtains µfv = µf v ≥ µf 0v = µf v, i.e. τf = ≥ ∫ − + − + − + 1 1 1 1 k m S k m k m d f v σ µ ∫ − + = ≥ − + − + 1 1 1 1 k m S k m k m f d f v τ σ µ

4. Exact cellular decompositions are structures that globally encode

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52